ECE 329 Operating Systems
Chapter 7
15 of 42

Process Synchronization
Any computer system worth its salt will allow for processes to execute concurrently. Concurrent processes are either competing for the CPU (and other resources), or they are cooperating with each other to share resources.
An Operating System must deal with competing processes by carefully allocating resources and protecting processes from each other.

Since competing processes do not share information or communicate with each other, they cannot affect each other’s execution. They do, however, compete for resources. Competing processes are

• Deterministic.

• Reproducible.

• Can stop and start at will.

• Don’t have to worry about synchronization with other processes.

Since cooperating processes must share some resources, protecting them from each other is a more difficult task. Cooperation generally deals with either sharing or communicating (message passing). Cooperating processes can affect each other! And, as a result, are
• Non-deterministic (a problem!).

• May be irreproducible (a problem!).

• Subject to race conditions (a problem!).

A race condition can occur when two or more processes access shared data concurrently and correct operation/output of the program depends upon the sequence of certain instructions.

Consider this “simple” problem of having processes synchronize the sharing of data. For example, the two processes shown below might need to be synchronized.

[image: image1.emf]
And the results can be even worse in object code.

[image: image2.emf]
Without synchronization, we may have undesired results!

Who remembers read-modify-write cycles?

To provide for synchronization, we must designate sections of code containing the access of shared resources as “critical sections.”

These critical sections must provide the following assurances to guarantee consistency:

· Mutual Exclusion – Only one process may be executing in a critical section at an given “time.”
· Progress – There can be no definite infinite postponement. The task must be able to move forward (be deadlock free.)

· Bounded Waiting – No indefinite postponement. (Starvation Free.) Once access to the critical section is granted, a limited number of other requests will be granted.
· No Strict Alternation – If no other process needs the critical section, a requesting process can proceed immediately.
Certain processes need to be mutual exclusive. For example, consider the following situation where your answering machine says:

“Water bill due today. Water will be shut off tonight!”
Unfortunately, your worthless roommate forgot to pay the bill after filling up the bed of his truck to make a pool. Either of you can listen to the message and go to pay the bill. The $190 bill must be paid, but only once! (There is $210 in your joint (?) account!) What to do?
Roomie A
Roomie B
	if (!BillPaid)

{ if (!NotePresent)

 { LeaveNote(“Paying”);

	
	if (!BillPaid)

{ if (!NotePresent)

 { LeaveNote(“Paying”);

	 PayWaterBill();
	
	 PayWaterBill();

	 RemoveNote();

 }

 WasteMoreWaterA();

}
	
	 RemoveNote();

 }

 WasteMoreWaterB();

}

‘
This solution is fine for roomies, but not computers. Why?
Now consider the following example with leaving two notes, and switching the order of the checking for message and checking for note lines.

Roomie A
Roomie B

	LeaveNote(A);

if (!NotePresent(B))

{

 if (!BillPaid)

 {
	
	LeaveNote(B);

if (!NotePresent(A))

{

 if (!BillPaid)

 {

	 PayWaterBill();
	
	 PayWaterBill();

	 }

}

RemoveNote(A); WasteMoreWater();
	
	 }
}

RemoveNote(B); WasteMoreWater();

What’s wrong with the above ‘solution’?

Consider a general solution below which has a “turn variable” to keep track of whose turn it is to enter the critical section.

	enum Processes {P1, P2};

int Turn = P1

Process 1
Process 2

	for (i=0; i<2; i++)

{

 while (Turn == P2){}

 if (!BillPaid)
	Negotiation
	for (i=0; i<4; i++)

{

 while (Turn == P1){}

 if (!BillPaid)

	 PayWaterBill();
	
	 PayWaterBill();

	 Turn = P2;

 DoOtherStuff1();

}
	Release
	 Turn = P1;

 DoOtherStuff2();

}

[image: image3.emf]Process 1

C.S.

C.S. C.S.

C.S.

Process 2

Turn

P1 P1 P1 P2 P2

In the preceding example, each program must enter the critical section the same number of times (and hope that the other process does not terminate while in the critical section.)
This “solution” has a problem with Strict Alternation.

What happens when you and your roommate “take turns” paying the bill each month, and then (the month it’s not your turn to pay the bill) your roomie decides to leave school and just forgets to tell you...

Also consider a context switch between if (!BillPaid) and PayWaterBill().
“Taking Turns” is no solution at all, so let’s add another variable, that is, one for each process.

	enum Processes {P1, P2};

bool WantCR[2] = {FALSE, FALSE};

Process 1
Process 2

	for (i=0; i<2; i++)

{

 while (WantCR[P2]){}

 WantCR[P1] = TRUE;

	Negotiation
	for (i=0; i<4; i++)

{

 while (Turn == P1){}

 WantCR[P2] = TRUE;

	 DoCriticalStuff();
	
	 DoCriticalStuff();

	 WantCR[P1] = FALSE;

 DoOtherStuff1();

}
	Release
	 WantCR[P2] = FALSE;

 DoOtherStuff2();

}

The above solves Strict Alternation problem, because either process can enter the critical section as many times as they want regardless of the number of times the other process enters. But consider the following:

[image: image4.emf]for (i=0; i<2; i++) {

 while(WantCR[P2]);

 WantCR[P1] = TRUE;

 DoCriticalStuff();

for(i=0; i<4; i++) {

 while(WantCR[P1]);

 WantCR[P2] = TRUE;

 DoCriticalStuff();

int

int

With interrupts happening at ‘just the right time,’ both tasks will be allowed into the critical section at the ‘same time.’
So now let’s try switching the negotiation line with the flag line to give:

	enum Processes {P1, P2};

bool WantCR[2] = {FALSE, FALSE};

Process 1
Process 2

	for (i=0; i<2; i++)

{

 WantCR[P1] = TRUE;

 while (WantCR[P2]){}

	Negotiation
	for (i=0; i<4; i++)

{

 WantCR[P2] = TRUE;

 while (WantCR[P1]){}

	 DoCriticalStuff();
	
	 DoCriticalStuff();

	 WantCR[P1] = FALSE;

 DoOtherStuff1();

}
	Release
	 WantCR[P2] = FALSE;

 DoOtherStuff2();

}

Consider an interrupt between the flag and negotiation lines:

[image: image5.emf]for (i=0; i<2; i++) {

 WantCR[P1]

while(WantCR[P2]);

 DoCriticalStuff();

 = TRUE;

for(i=0; i<4; i++) {

 WantCR[P2]

while(WantCR[P1]);

 DoCriticalStuff();

 = TRUE;

int

int

Now ‘deadlock’ is a problem. Since the interrupt happened after P1 was set, allowing P2 to be set before the negotiation, neither process will ever enter the critical region.
What’s a little ole programmer to do?

Let’s try another crack at it:

Process 1
Process 2

	for (i=0; i<2; i++)

{TRY: WantCR[P1] = TRUE;

 if (WantCR[P2])

 { WantCR[P1] = FALSE;

 goto TRY;

 }

	
	for (i=0; i<4; i++)

{TRY: WantCR[P2] = TRUE;

 if (WantCR[P1])

 { WantCR[P2] = FALSE;

 goto TRY;

 }

	 DoCriticalStuff();
	
	 DoCriticalStuff();

	 WantCR[P1] = FALSE;

 DoOtherStuff1();

}
	
	 WantCR[P2] = FALSE;

 DoOtherStuff2();

}

This method above is safe (deadlock free) but still not perfect. What if an interrupt always happens in the same place, say between the setting and resetting of our release variable.

[image: image6.emf]1

15

2

16

3

4

12

13

14

5

6

7

8

9

10

11

TRY: WantCR[P1]

)

{ WantCR[P1] = FALSE;

 goto TRY;

}

 = TRUE;

if (WantCR[P2]

TRY:

)

{ = FALSE;

 goto TRY;

}

WantCR[P1] = TRUE;

if (WantCR[P2]

WantCR[P1]

TRY:

WantCR[P1] = TRUE;

TRY: WantCR[P2]

)

{ WantCR[P2] = FALSE;

 goto TRY;

}

 = TRUE;

if (WantCR[P1]

TRY:

)

{ = FALSE;

 goto TRY;

}

WantCR[P2] = TRUE;

if (WantCR[P1]

WantCR[P2]

TRY:

WantCR[P2] = TRUE;

With interrupts happening again and again in the same places, we could end up getting a “live lock” situation.

To help to fix this situation, we could add randomness to the process to force the interrupt to happen in a different place, thus allowing one process to proceed.
	TRY: WantCR[P1] = TRUE;

if (WantCR[P2])

{ WantCR[P1] = FALSE;

 sleep(rand());

 goto TRY;

}

	DoCriticalStuff();

Or consider Dekker’s Algorithm, which adds a “Turn” variable.

	enum Processes {P1, P2};
bool WantCR[2], CRTurn = P2;

Process 1
Process 2
	for (i=0; i<2; i++)
{ WantCR[P1] = TRUE;

 while(WantCR[P2])

 { if (CRTurn == P2)

 { WantCR[P1] = FALSE;

 while(CRTurn == P2);

 WantCR[P1] = TRUE;

 }

 }

	
	for (i=0; i<4; i++)

{ WantCR[P2] = TRUE;
 while(WantCR[P1])

 { if (CRTurn == P1)

 { WantCR[P2] = FALSE;

 while(CRTurn == P1);

 WantCR[P2] = TRUE;

 }

 }

	 DoCriticalStuff();
	
	 DoCriticalStuff();

	 CRTurn = P2;

 WantCR[P1] = FALSE;

 DoOtherStuff1();

}
	
	 CRTurn = P1;

 WantCR[P2] = FALSE;

 DoOtherStuff2();

}

What does this do for us?

Peterson improved (simplified) it later as below. The Turn variable does not need to be initialized.
	bool P1_Critical, P2_Critical;

int Turn;

Process 1
Process 2
	for (i=0; i<2; i++)

{ P1_Critical = TRUE;

 Turn = P2;

 while(P2_Critical &&

 (Turn == P2));

 { P1_Critical = FALSE;

 while (Turn == P2);

 P1_Critical = TRUE;

 }

 }

	
	for (i=0; i<4; i++)

{ P2_Critical = TRUE;

 Turn = P1;
 while(P1_Critical)

 { if (Turn == P1)

 { P2_Critical = FALSE;

 while (Turn == P1);

 P2_Critical = TRUE;

 }

 }

	 DoCriticalStuff();
	
	 DoCriticalStuff();

	 P1_Critical = FALSE;

 DoOtherStuff1();

}
	
	 P2_Critical = FALSE;

 DoOtherStuff2();

}

Both Dekker’s and Peterson’s (Dekker-Peterson’s Algorithm) are solutions to our problem, but they only work for two processes!
These algorithms can be generalized for N processes, but N must be known a priori, that is, N must be fixed. The algorithms become much too complicated and expensive.

As shown, implementing a mutual exclusion algorithm is troublesome!

Consider Lamport’s Bakery Algorithm is an example of an extension for multiple processes.

	#define N 20

bool Choosing[N];

int Number[N];

Process i

	while (TRUE)
{ Choosing[i] = TRUE;

 Number[i] = max(Number[0],...,Number[N-1]) + 1;

 Choosing[i] = FALSE;
 for (j=0; j<N; j++)

 { while (Choosing[j]);
 while (Number[j] != 0)

 && ((Number[j], j) < (Number[i], i))

 }

	 DoCriticalStuff();

	 Number[i] = 0;

 DoOtherStuffi();

}

where

 max(a0,...,aN-1) = k, such that k (ai, i=0,...N-1;
and
 ((a, b) < (c, d)) if a < c, or a == c and b < d.

Notice how odd the following lines seem:
 Choosing[i] = TRUE;

 number[i] = max(Number[0],...,Number[n-1]) + 1;

 Choosing[i] = FALSE;
What would a novice/non- programmer say about your code?
Two other “solutions” might be the following. One, simply disable the interrupts before entering critical sections.

	 while (TRUE)

 { DisableInterrupts();

	 DoCriticalStuff();

	 EnableInterrupts();
 }

What are some problems with the above method?

Another, as previously questioned, would involve hardware support, using read-modify-write cycles. That is, read the contents of a memory location, change it, and write it back all in one (atomic) instruction.

TAS
“Test and Set”
Motorola 68000

CAS
“Compare-and-Swap”
IBM 370, Motorola 68000

XCHG
“Exchange”
Intel 8086

LL/SC
“Load-Linked
MIPS, PowerPC

/Store-Conditional”
A TAS implementation for mutual exclusion might look like as follows:

	bool Check = FALSE;

Process i
TAS Implementation

	while (TRUE)
{ while(TAS(&Check));

	
	bool TAS(int *Flag)

{ bool OKorNot = *Flag;

 *Flag = TRUE;

 return OKorNot;

}

	 DoCriticalStuff();
	
	

	 Check = FALSE;

}
	
	

The TAS() implementation for mutual exclusion looks like the following:

	bool Lock = FALSE;

Process i
TAS Implementation

	while (TRUE)
{ while(TAS(&Lock));

	
	bool TAS(int *Flag)

{ bool WasSet;

 // These are “Atomic”

 WasSet = *Flag;

 *Flag = TRUE;

 return WasSet;

}

	 DoCriticalStuff();
	
	

	 Lock = FALSE;

 DoOtherStuffi();

}
	
	

Process 1
Lock =
Process 2

 FALSE

	while(TRUE)
{

 while(TAS(&Lock));
	--- int --->
 TRUE
<--- int ---

--- int --->
	while(TRUE)
{while(TAS(&Lock));

	
	
	 CR();

	 while(TAS(&Lock));

 while(TAS(&Lock));
	<--- int ---

--- int --->
FALSE
<--- int ---

TRUE
	 Lock = FALSE;

	 CR();
	--- int --->
	while(TRUE)

	 Lock = FALSE;
	<--- int ---

FALSE
--- int --->
	{

 while(TAS(&Lock));

 while(TAS(&Lock));

	
	TRUE
	 CR();

A Swap() can be implemented for mutually exclusiveness as so:

	int Lock = FALSE;

Process i
Swap Implementation

	while (TRUE)
{ bool Key = TRUE;

 while(Key == TRUE)

 Swap(&Lock, &Key);

	
	void Swap(bool *a, bool *b)

{ bool Temp;

 // Following are “Atomic”

 Temp = *a;

 *a = *b;

 *b = Temp;

}

	 DoCriticalStuff();
	
	

	 Lock = FALSE;

 DoOtherStuffi();

}
	
	

[image: image7.emf]Process 1 Key/Lock/Key

????//???? FALSE

TRUE/FALSE/????

TRUE//FALSE FALSE

TRUE/FALSE/TRUE

FALSE/TRUE/TRUE

FALSE/TRUE/TRUE

FALSE/TRUE/TRUE

FALSE//TRUE FALSE

FALSE/TRUE/FALSE

TRUE/TRUE/FALSE

TRUE/TRUE/FALSE

TRUE/TRUE/FALSE

Process 2

.

.

.

while(TRUE)

{

while(TRUE)

{

while(TRUE)

{

KEY = ; TRUE

KEY = ; TRUE

KEY = ; TRUE

while (KEY==TRUE)

while (KEY==TRUE)

while (KEY==TRUE)

while (KEY==TRUE)

while (KEY==TRUE)

while (KEY==TRUE)

Swap(); &Lock,&Key

Swap(); &Lock,&Key

Swap(); &Lock,&Key

Swap(); &Lock,&Key

Swap(); &Lock,&Key

Swap(); &Lock,&Key

DoCriticalStuff();

DoCriticalStuff();

 Lock = ;

}

FALSE

 Lock = ;

}

FALSE

(int)

Unfortunately, neither of these algorithms satisfies the bounded-waiting requirement. The following does, however.
	#define N 20

bool Lock = FALSE;

bool Waiting[N] = {FALSE, FALSE, ... FALSE};

Process i

	while (TRUE)
{ bool Key;

 Waiting[i] = TRUE;

 Key = TRUE;

 while(Waiting[i] && Key) Key = TAS(&Lock);

	 DoCriticalStuff();

	 j = (i + 1) % N;
 while ((j != i) && !Waiting[j]) j = (j + 1) % N;

 if (j == i) Lock = FALSE;

 else Waiting[j] = FALSE;

 DoOtherStuffi();

}

Mutual Exclusion? The value of Key can only become FALSE if TAS is executed since Key is set to TRUE. Therefore, the first process to run TAS can enter the critical section, and all others will wait at while() loop.
Progress? After a process exits critical section, it either sets Waiting[j] or Lock to FALSE. Either allows another process to enter its critical section.

Bounded-Waiting? Since an exiting process picks a next process to enter by scanning Waiting[] in order, the longest a process must wait is n-1 turns.

Unfortunately, implementing atomic TASs on multi-processor machines is difficult. We’ll look at an example after discussing semaphores.
Semaphores
Semaphores are unsigned integer variables used to synchronize processes by guarding them. They have two atomic operations.
Proberen (probe/test/wait)
Vehhogen (release/free)

	P(int *Sema4)
{
 while (*Sema4 == 0);

 (*Sema4)--;

}

	
	V(int *Sema4)
{

 (*Sema4)++;

}

Note: Since we are not Dutch (like Edgar Dykstra), we will use the functions Wait() for P() and Signal() or Free() for V().

Semaphores are simple and can be used for:

· Mutual Exclusion – Semaphore is initialized to one.

· Synchronization of Processes – Semaphore is initialized to zero.

· Managing resources with multiple instances – Semaphore is initialized to the number of instances.

Semaphores can work with multiple processes with multiple critical sections.

Each critical section can have unique access to a semaphore, and semaphores can allow multiple processes to enter a critical section (if so desired.)

Consider a solution to the mutual exclusion problem shown below:

Roomate i

	while (TRUE)

{ Wait(PayBillSema4);

	 if (BillNotPaidMessage)

 { PayWaterBill();
 }

	 Signal(PayBillSema4());

 WasteMoreWater();
}

Observe how semaphores are used to provide mutual exclusion.

Wait(s) { while (s == 0); s--; }
Signal(s) { s++; }

[image: image8.emf]
Synchronizing Semaphores

Semaphores can also be used to insure that processes are done in a certain order.
Festus
Marshal Dillon
	while(CARTRIDGES);

{ Wait(ReadyToLoad);

 LoadGun();
 CockGun();

 Signal(ReadyToFire);

}

	
	while(INJUNS)

{ Wait(ReadyToFire);

 AimGun();

 FireGun();

 Signal(ReadyToLoad);

}

[image: image9.emf]ReadyToFire/ReadyToLoad LoadGun();

LoadGun();

AimGun();

CockGun();

CockGun();

0

0

0

0

0

0

0

0

0

....

0

0

0

0

0

1

0

1

1

FireGun();

Wait(ReadyToFire);

Wait(ReadyToFire);

Wait(ReadyToFire);

Wait(ReadyToLoad);

Wait(ReadyToLoad);

Signal(ReadyToFire);

Signal(ReadyToFire);

Signal(ReadyToLoad);

What is an obvious disadvantage of Semaphores?

[image: image10.emf]
Blocking Semaphores

To correct this spinlock (the process is locked in a busy waiting/ spinning mode), we need to remove it from the “spin cycle.”
Consider adding the following which not only has the semaphore value, but can store a waiting process:

typedef struct
{ int Value;

 struct TProcess *Bed;

} Semaphore;

Now Wait() looks like:
void Wait(Semaphore S)

{ S.Value--;

 if (S.Value < 0)

 { TuckIn(ProcessA, S.Bed);

 Block(ProcessA);

 }
}

And Signal() looks like:
void Signal(Semaphore S)

{ S.Value++;

 if (S.Value <= 0)

 { WakeUp(ProcessA, S.Bed);

 UnBlock();

 }

}

Where Block and UnBlock have been added to remove a blocked process from trying to execute.

Notice these semaphore values can be negative. What does an S.Value of -6 mean?

Problems with Semaphores

Deadlock and Starvation can still be a problem with semaphores. Consider the deadlock below:
Process Him
Process Her

	Wait(Sorry);

Wait(Present);

[image: image11.emf]
	int -------------->
<-------------- int

<--- deadlock --->
	Wait(Present);

Wait(Sorry);

[image: image12.emf]

	DoCriticalStuff();
	
	DoCriticalStuff();

	Signal(Sorry);

Signal(Present);

	
	Signal(Present);

Signal(Sorry);

Or the starvation shown below, if one implements a stack approach (LIFO) to semaphore waiting:
Process 1
Process 2
Process 3

	Wait(S);

	int --->

<----------
	Wait(S)

[image: image13.emf]
	int --->

----- int
	Wait(S);

[image: image14.emf]

	CR();
	
	
	
	

	Signal(S);

[image: image15.emf]
	int --->
<----------

int --->
	Wait(S)

[image: image16.emf]
	int --->

----- int

int --->
	Wait(S);

	
	
	
	
	CR();

	Wait(S);
	<----------
	
	---- int
	Signal(S);

	CR();
	int --->
	
[image: image17.emf]
	
	

Binary Semaphores

Counting Semaphores (those previously given) can take on any integer value. When a counting semaphore is initialized to some number greater than one, it means that more than one process may have access to a critical section.

 Binary Semaphores, on the other hand, are allowed to be only zero or one. Typically, zero means “free” and one means “busy.”
A counting semaphore may be implemented using a binary semaphore as shown below:
	bool BS1 = FALSE, BS2 = FALSE;

int CS = 3;

Wait
Signal

	void WaitCS(int *CS)
{

 WaitBS(BS1);
	
	void Signal(int *CS)

{

 WaitBS(BS1);

	 (*CS)--;

 if (*CS < 0)

 { SignalBS(BS1);

 WaitBS(BS2);

 }
	
	 (*CS)++;

 if (*CS <= 0)

 { SignalBS(BS2);

 }

	 SignalBS(BS1);

}
	
	 else SignalBS(BS1);
}

Example of use of Counting Semaphores Implemented with Binary Semaphores

[image: image18.emf]
Implementing Wait() on a Multi-Processor Machine.
	wait(Semaphore *Sema4)

{ disable_ints();

RETRY: ts
Sema4->Lock;

 jnz RETRY

if (Sema4->Value > 0)

{ Sema4->Value = 1;

 mvi Sema4->Lock, 0

 enable_ints();

 return;

}

else

{ mvi Sema4->Lock, 0

 enable_ints();

 suspend(Sema4->SuspendedQueue);

 return;

 }

}

The above used the following implementation of a TAS instruction for an Intel machine.

RETRY: ts Sema4->Lock

 jnz RETRY

The above causes a lot of memory writes and cache validity problems. Now consider the following:

RETRY: cmpi Sema4->Lock, 0 // just reads
 jnz RETRY

 ts Sema4->Lock // one read and write!

 jnz RETRY

_1151502394.unknown

_1151733126.unknown

_1151734065.unknown

_1160200032.unknown

_1151734754.unknown

_1151733874.unknown

_1151730888.unknown

_1151731243.unknown

_1151504034.unknown

_1106120557.unknown

_1106574253.unknown

_1107087866.unknown

_1106574130.unknown

_1106118146.unknown

