ECE 329 Slides
Programming Notes for C
38 of 38

C Programming Notes
C versus Java
Similarities -
· Basic Syntax

· Variable Declarations

· Assignments, Expressions, Operators and Precedence

· Branching and Loop Control: if-then, do-while, for
Exception: C has no inline variable declaration (C++ does) so this in Java:
for (int i=0; i<10; i++)

must be the following, in C:
int i;

...

for (i=0; i<10; i++)
Differences – Since C is not “object oriented” it has
· No objects or classes
· No method invocation
· No inheritance

· No public/private/protected declarations

· No garbage collector (you must take out your own garbage!)

Other Important Differences
Pointers
Preprocessor Directives
Include Files
Prototyping
Manual Memory Allocation
Macros
Structures
Typedefs
Externals

Opaque Types
Functions
I/O Libraries

Parameter Passing
Linkers
Pointers

Pointers are conceptually similar to object references in Java. In fact, they are a reference to an object’s location (address).

All memory locations store numbers, but pointers don’t store data, they store the address/reference/location of data. Note that the data the address refers to may indeed be another address, a pointer to a pointer.
int x = 4;
/* create an integer called x

 and store a 4 there */

An asterisk, “*”, is used to declare a pointer type:

int *y = &x;
/* create a pointer called y

and store the address of x there */

[image: image1.emf]
The ampersand, “&”, above is used to return the address of a variable.

The asterisk, “*”, can also be used to dereference an address. Consider the following:
char c;
/* create a place to store a character

and call it c */

char *ptrc = &c;
/* create a place to store an address

to a character, call it ptrc, and

place the address of c in it */
c = *ptrc + 3;
/* get the value ptrc points to, add

3,and store that in c */

c = *(ptrc + 3);
/* add 3 to the value ptrc points to

and store that in c */

Pointer Arithmetic

Pointer Arithmetic is different than standard arithmetic on integers in that there is an implied multiplication not shown. For example, consider the following statements:

char c=0;
/* allocate storage for 1 byte, and set to 0 */
int i=0;
/* allocate storage for 4 bytes, and set to 0 */
double x=0;
/* allocate storage for 8 bytes, and set to 0 */
c++;
/* increment c, c now equals 1 */

i++;
/* increment i, i now equals 1 */
x++;
/* increment x, x now equals 1.0 */

Now consider the following pointer statements:
char *d=0;
/* allocate pointer to character, and set to 0 */
int *j=0;
/* allocate pointer to integer, and set to 0 */

double *y=0;
/* allocate pointer to double, and set to 0 */
d++;
/* increment d, d now equals 1 */

j++;
/* increment j, j now equals 4 */

y++;
/* increment y, y now equals 8 */

Note: Pointer arithmetic only involves addition and subtraction. Multiplication and division is meaningless.

Pointers and Arrays

Arrays in C—and in any other language for that matter—are implemented using pointers. The name (label) of the array can be treated as the address of the first element of the array.
Consider the following statements:
int i[10];
/* allocate an array of 10 integers, i[0]-i[9] */
int j, k;
/* allocate space for integers, j and k */
int *p;
/* allocate a pointer to an integer */
What do these statements do?

j = i[4];
/* put the value of i[4] in to j */
j = *(i + 4);
/* add 4 (integers) to the address of a[0],

and get what’s there and put that in j */
p = &i[4];
/* put the address of i[4] into p */
j = *p;
/* put the value pointed to by p into j */
And what do the following do?

k = i[1];
/* put the value of i[1] into k */

k = *(i+1);
/* put the value of i[0 + 1] into k */

[image: image2.emf]
“Pointers” for Pointers

Consider the statements:

int i[100];

// array of 100 integers, i[0], i[1], i[99]

int *ptri;

// pointer (address) to an integer

Then

ptri = i;

is equivalent to
ptri = &i[0];

ptri[3] = 5;

is equivalent to
*(ptri + 3) = 5;

ptri = i;

ptri[3] = 5;

are equivalent to
i[3] = 5;

ptri = &i[3];

is equivalent to
ptri = i + 3;

ptri = &i[3];

ptri[3] = 5;

are equivalent to
i[6] = 5;

ptri = 1000;

ptri += 2;

are equivalent to
ptri=1004 or 1008, not 1002!

Note that “pointer arithmetic” is not what it seems:

char *ptrc;

ptrc = 1000;

ptrc++;

// then ptrc = 1001;

int *ptri;

ptri = 1000;

ptri++;

// then ptri = 1002 if ints are two bytes;

long *ptrl;

ptrl = 1000;

ptrl++;

// then ptrl = 1004 if longs are four bytes;

And give the declaration:

char *ptrc = 1000;
int *ptri = 1000;
long *ptrl = 1000;

	Address
	
	What they
	point to
	

	0x1000
	
	ptrc
	ptri
	ptrl

	0x1001
	
	ptrc + 1
	
	

	0x1002
	
	ptrc + 2
	ptri + 1
	

	0x1003
	
	ptrc + 3
	
	

	0x1004
	
	ptrc + 4
	ptri + 2
	ptrl + 1

	0x1005
	
	ptrc + 5
	
	

Note also that “pointer multiplication” and “division” is meaningless.
A Note on Pointer Differences

#include <stdio.h>

//---
char c; int i; float f; double d;
struct st {char a; int b; float c; } s; char dummy;

void main(void)

{

 printf("&c = %d\n&i = %d\n&f = %d\n&d = %d\n&s = %d\n&dummy = %d\n", &c, &i, &f, &d, &s, &dummy);
 printf("&i-&c = %d, &c-&i = %d\n", &i-&c, &c-&i);

 printf("&f-&i = %d, &i-&f = %d\n", &f-&i, &i-&f);

 printf("&f-&c = %d, &c-&f = %d\n", &f-&c, &c-&f);

 printf("&d-&f = %d, &f-&d = %d\n", &d-&f, &f-&d);

 printf("&s-&d = %d, &d-&s = %d\n", &s-&d, &d-&s);

}

//---
Output

&c = 4203064

&i = 4203068

&f = 4203072

&d = 4203076

&s = 4203084

&dummy = 4203096

&i-&c = 1, &c-&i = -4

&f-&i = 1, &i-&f = -1

&f-&c = 2, &c-&f = -8

&d-&f = 0, &f-&d = -1

&s-&d = 0, &d-&s = -1

#include <stdio.h>

//---

char c1; int i1; double d1;

char c2; int i2; double d2;

void main(void)

{

 printf("&c1 = %d\n", &c1);

 printf("&i1 = %d\n", &i1);

 printf("&d1 = %d\n", &d1);

 printf("&c2 = %d\n", &c2);

 printf("&i2 = %d\n", &i2);

 printf("&d2 = %d\n", &d2);

 printf("&c2-&c1 = %d, &c1-&c2 = %d\n", &c2-&c1, &c1-&c2);

 printf("&i2-&i1 = %d, &i1-&i2 = %d\n", &i2-&i1, &i1-&i2);

 printf("&d2-&d1 = %d, &d1-&d2 = %d\n", &d2-&d1, &d1-&d2);

}

//---

Output

&c1 = 4203032

&i1 = 4203036

&d1 = 4203040

&c2 = 4203048

&i2 = 4203052

&d2 = 4203056

&c2-&c1 = 16, &c1-&c2 = -16

&i2-&i1 = 4, &i1-&i2 = -4

&d2-&d1 = 2, &d1-&d2 = -2

Pointers to Functions

A function pointer can be used to allow a variable to call different functions.

#include <stdlib.h>

#include <stdio.h>

typedef void (*fptr)(void);

void PrintGoTigers(void){ printf("Go Tigers!\n"); }

void PrintOrangeAndWhite(void)
 { printf("Orange and White!\n"); }

void PrintReignSupremeAlway(void)
 { printf("Reign Supreme Alway!\n"); }

void PrintOther(void)
 { printf("AroundTheBowlAndDownTheHoleGoCocksGo...\n"); }

fptr Func[4] =

{ PrintGoTigers,
 PrintOrangeAndWhite,
 PrintReignSupremeAlway,
 PrintOther

};

void main(void)

{ char c;

 printf("Input 0, 1, 2, or 3\n");

 while (1)

 { fflush(stdin);

 c = getchar();

 if ((c < '0') || (c > '3')) exit(0);

 Func[c - '0'](); // Must put “()” here
 // or nothing happens

 }

}
See a help file on how a function pointer is used with the qsort() function.
#include <stdio.h>

void GoTigers(int c)

{ int i;

 for (i=0; i<c; i++)

 { printf("Go Tigers!\n");

 }

}

void OrangeAndWhite(const void *i)

{ int j;

 for (j=0; j<(int *)i; j++)

 { printf("Orange and White!\n");

 }

}

void BetterDead(const void *i)

{ int j;

 for (j=0; j<(int *)i; j++)

 { printf("BetterDeadThanBlackAndRed!\n");

 }

}

// --- //

void RunFunctionA(void (*func)(int))

{ func(5);

}

void RunFunctionB(void (*func)(const void *))

{ func((const void *)7);

}

void RunFunctionC(void (*func)(const void *))

{ int a = 10;

 func((const void *)a);

}

// --- //

void main(void)

{

 RunFunctionA(GoTigers);

 RunFunctionB(OrangeAndWhite);

 RunFunctionC(BetterDead);

}

Structures

Structs in C are simply a collection of variables which is grouped together in a single data structure and can be referenced as a single variable. The variables grouped together can be of different types (and structures) and are accessed by using the dot, “.”, operator.
struct NameStruct

{ char Title[4];

 char First[25];

 char MiddleInitial;

 char Last[25];
 char Suffix[4];
};

struct PersonalDataStruct

{ struct NameStruct Name;

 unsigned char Age;

 char SSN[10];

 double Balance;

};

struct PersonalDataStruct Person[100];

sprintf(Person[0].Name.Title, "Dr.");

sprintf(Person[0].Name.First, "William");
Person[0].Name.MiddleInitial = 'J';

sprintf(Person[0].Name.Last, "Reid");
sprintf(Person[0].Name.Suffix, “III”);
Person[0].Age = 36;

Person[0].Balance = 17.86;
 printf("%s %s %c %s %s\n", Person[0].Name.Title,

 Person[0].Name.First,

 Person[0].Name.MiddleInitial,

 Person[0].Name.Last,

 Person[0].Name.Suffix);
Pointers to Structures

A great advantage of pointers are their ability to pass large structures to functions by simply referencing their address (location of the data) instead of passing all of the data to the function.

A pointer to a structure is declared just like a pointer to any other type. To reference a field of the structure, however, the “->” operator must be used instead of the “.” operator.

 struct PersonalDataStruct Person1;

 struct PersonalDataStruct *ptrPerson;

 sprintf(Person1.Name.First, "William");

 ptrPerson = &Person1;

printf("%s\n", ptrPerson->Name.First);

Notice how “.” is still used for Name.First, since Name is not a pointer, as opposed to:

printf("%s\n", Person1.Name.First);

However, if we had a pointer to a struct in a struct, then we would. Consider the following.
struct NameStruct

{ char First[25]; char Last[25];

};

struct PersonalData

{ struct NameStruct *ptrName;

};

struct PersonalData *ptrPerson;

ptrPerson = malloc(sizeof(struct PersonalData));

ptrPerson->ptrName = malloc(sizeof(struct NameStruct));

sprintf(ptrPerson->ptrName->First, "William");

sprintf(ptrPerson->ptrName->Last, "Reid");
Bit-Fields

Bit-Fields are structs which use bit declarations as fields as shown below:

#include <string.h>

#include <stdio.h>

#define ON 1

#define OFF 1

struct Motors

{ unsigned Motor0 : 1;

 unsigned Motor1 : 1;

 unsigned Motor2 : 1;

 unsigned Motor3 : 1;

 unsigned Motor4 : 1;

 unsigned Motor5 : 1;

 unsigned Motor6 : 1;

 unsigned Motor7 : 1;

};

//---

void main(void)

{

 struct Motors MotorMask;

 printf("Motor Mask = %X\n", MotorMask);

 memset(&MotorMask, 0, 1);

 printf("Motor Mask = %X\n", MotorMask);

 MotorMask.Motor0 = ON;

 MotorMask.Motor1 = ON;

 MotorMask.Motor7 = ON;

 printf("Motor Mask = %X\n", MotorMask);

}

//---

Output

Motor Mask = 854C30

Motor Mask = 854C00

Motor Mask = 854C83

Unions

Unions have a similar declaration to structs, but are very different. The variables within a union overlap the same address space, giving the user multiple ways to reference the same memory. Consider the union below:

 #define HIGH 3

 #define NOTSOHIGH 2

 #define NOTSOLOW 1

 #define LOW 0

 union RegisterUnion

 { unsigned int Full;

 unsigned char Byte[4];

 };

 union RegisterUnion A;

 A.Full = 0x0156ABEF;

 printf("%X %X %X %X\n", A.Byte[HIGH],

 A.Byte[NOTSOHIGH],

 A.Byte[NOTSOLOW],

 A.Byte[LOW]);
What is printed out?
Enumerations

Enumerations can be helpful to programmers by letting the compiler number to the defining of constants for them. An enumeration is an integer type which simply numbers consecutively the labels given in the enum statement. The numbering can be overridden by explicitly defining the value which is helpful when starting at one, or when numbers are skipped.
 enum DayOfWeek

 { SUNDAY = 1,

 MONDAY,

 TUESDAY,

 WEDNESDAY,

 THURSDAY,

 FRIDAY,

 SATURDAY

 };

 enum DayOfWeek A;

 enum ErrorTypes

 { ERROR_UNKNOWN,

 ERROR_BAD_NAME,

 ERROR_TOO_LARGE,

 ERRORS

 } ParameterError;

 char *ErrorMessage[ERRORS] =

 { "Unknown",

 "Bad Name",

 "Too Large"

 };

 printf("Error = %s\n",
 ErrorMessage[ERROR_BAD_NAME]);

 enum DummyErrorTypes

 { ERROR_0,

 ERROR_A = ERROR_0 + 5,

 ERROR_B,

 ERROR_C

 } Error;
Type Definitions
A typedef statement can be used to define user types in order to make code more compact, easier to read, and more portable.
 typedef unsigned char UCHAR;

 typedef signed int SINT32;

A typedef can also be used with structures to simplify code and behave like objects.

 typedef struct P

 { double X; double Y; double Z;

 } Point;

 typedef struct S

 { Point Center;

 double Radius;

 } Sphere;

 Point Point1, Point2, Point3;

 Sphere Sphere1, Sphere2, Sphere3;

 Point1.X = 7;

 Point1.Y = 3;

 Point1.Z = -1.3;

 memcpy(&Sphere1.Center, &Point1, sizeof(Point1));

 Sphere1.Radius = 16.7;

 printf("Sphere1: Center(%f %f %f) Radius(%f)\n",

 Sphere1.Center.X,

 Sphere1.Center.Y,

 Sphere1.Center.Z,

 Sphere1.Radius);

 memcpy(&Sphere2, &Sphere1, sizeof(Sphere1));

 Sphere2.Center.Y = -8;

 printf("Sphere2: Center(%f %f %f) Radius(%f)\n",

 Sphere2.Center.X,

 Sphere2.Center.Y,

 Sphere2.Center.Z,

 Sphere2.Radius);
Memory Allocation
We can use the malloc function to dynamically allocate memory for a variable. To do this, we use a pointer to a type and let the malloc function return an address to memory allocated for that type.
All pointers must be initialized before using them. For example, the following code will create a segmentation fault (or worse, it won’t!)
int *x;

*x = 3.14159;
What would the code above do?

We could have used the malloc function to allocate some memory to store an integer in:

int *x;
x = (int *) malloc(sizeof(int));
*x = 3.14159;

The typecasting above, “(int *)”, is used to return the correct pointer type to x, since malloc by default returns a void pointer.
The sizeof() function above is used simplify finding the number of bytes required by the storage class.

Malloc with Structures
Consider the following which uses a pointer and the malloc function to allocate memory for a PersonalDataStruct. The sizeof function is very useful here, allowing us not to have to count the number of bytes taken up by the structure.
 struct PersonalDataStruct *ptrPerson;

 ptrPerson = malloc(sizeof(struct PersonalDataStruct));

 sprintf(ptrPerson->Name.Last, "Reid");

 printf("%s\n", ptrPerson->Name.Last);
The code would be a little more compact if we had used a typdef.

struct NameStruct

 { char Title[4]; char First[25]; char MiddleInitial;
 char Last[25]; char Suffix[4];

 };

typedef struct PDS

 { struct NameStruct Name;

 unsigned char Age;

 char SSN[10];

 double Balance;

 } PersonalDataStruct;

typedef PersonalDataStruct *ptrPDS;

ptrPDS ptrPerson;

ptrPerson = (ptrPDS) malloc(sizeof(PersonalDataStruct));

sprintf(ptrPerson->Name.First, "William");

sprintf(ptrPerson->Name.Last, "Reid");

printf("%s %s\n", ptrPerson->Name.First,

 ptrPerson->Name.Last);
Console I/O in C
To read from and print to the console, you can use formatted input and output functions such as printf() and scanf(). The function prototypes are found in the header file stdio.h. To use these functions, include the header with the compiler directive:

#include <stdio.h>

printf()
The prototype for printf() is:

int printf(const char *format[, argument, ...]);
The format is a string which uses format codes which are the percent sign followed by letters for the data type and numbers for the field width. The format has the form

% [flags] [width] [.prec] [F|N|h|l|L] type_char

where

flags
Flag character(s) Output justification, numeric signs, decimal points, trailing zeros, octal and hex prefixes.

width
Width specifier Minimum number of characters to print, padding with blanks or zeros.

prec
Precision specifier Maximum number of characters to print; for integers, minimum number of digits to print
F|N|h|l|L
Input size modifier Override default size of next input argument:

type_char
Conversion-type character.
Prefix
Format specifier
Type specified

F
p s
A far pointer

N
n
A near pointer

h
d i o u x X
A short int

l
d i o u x X
A long int

l
e E f g G
A double

L
e E f g G
A long double

L
d i o u x X
An __int64

h
c C
A single-byte character

l
c C
A Wide character

h
s S
A single-byte character string

l
s S
A Wide character string
type_char
Expected Input
Format of output
d
Integer
signed decimal integer

i
Integer
signed decimal integer

o
Integer
unsigned octal integer

u
Integer
unsigned decimal integer

x
Integer
unsigned hexadecimal int (with a-f)

X
Integer
unsigned hexadecimal int (with A-F)

f
Floating point
signed value of the form [-]dddd.dddd
e
Floating point
 “ [-]d.dddd or e[+/-]ddd
g
Floating point
signed value in either e or f form, based on given value and precision. Trailing zeros and the decimal point are printed if necessary.

E
Floating point
Same as e; with E for exponent.

G
Floating point
Same as g; with E for exponent if e format used

c
Character
Single character

s
String pointer
Prints characters until a null-terminator is pressed or precision is reached

%
None
Prints the % character

n
Pointer to int
Stores (in the location pointed to by the input argument) a count of the chars written so far.

p
Pointer
Prints the input argument as a pointer; format depends on which memory model was used. It will be either XXXX:YYYY or YYYY (offset only).
Flag
What it means

-
Left-justifies the result, pads on the right with blanks. If not given, it right justifies the result, pads on the left with zeros or blanks.

+
Signed conversion results always begin with a plus (+) or minus (-) sign.

blank
If value is nonnegative, the output begins with a blank instead of a plus; negative values still begin with a minus.

#
Specifies that arg is to be converted using an alternate form.
Note:
Plus (+) takes precedence over blank () if both are given.
Furthermore, “\n” is used to print a new line (ASCII 0x0A),”\r” a carriage return (ASCII 0x0D), “\t” a horizontal tab (ASCII 0x09), and “\\” a backslash (ASCII 0x5C).
printf() Examples
 char c = 'A';

 int i = 123;

 float f = 1.23E-10;

 double d = -1.23E-100;

 char *s = "South Carolina";

 char *format = "%0d\n";

 printf("Hello World!\n");

 printf("Hello %d Billion People\n", 6);

 printf("%c\n", '\\');

 printf("%d\n", '\\');

 printf("%X\n", '\\');

 printf("i=%d, f=%5.3f, d=%5.3lf, s=%s\n",i,f,d,s);

 printf("f=%+5.3e, d=%5.3e\n",f,d);

 printf("f=%10.2E, d=%6.1E\n",i,s);

 printf(format, i);

 format[1] = '8';

 printf(format, i);

Hello World!

Hello 6 Billion People

\

92

5C

i=123, f=0.000, d=-0.000, s=South Carolina

f=+1.230e-10, d=-1.230e-100

f= 1.79E-307, d=1.8E-307
123

 123
sprintf()
The function sprintf()is the same as printf() except that it prints the formatted string to another string instead of to the console. It is very handy for building strings.
int sprintf(char *buffer, const char *format[, argument, ...]);

scanf()
The function scanf()can be used to input data from the console. It has the same form as printf(), except that its arguments must be addresses (pointers) to where the information is to be stored.
int scanf(const char *format[, address, ...]);
printf("Enter a number between 1 and 10.\n");

scanf("%d", &i);

fflush(stdin); /* flush the input stream in case of bad
 input */
File I/O in C
Many times it will be handy to be able to log what your program is doing by saving output in a file. The file functions fopen() and fprintf() and fclose() can be used to easily keep a log file.

 FILE *OutputFile;

 if ((OutputFile = fopen("Program1.log", "wt")) == NULL)

 { fprintf(stderr, "Cannot open output file.\n");

 return 1;

 }

 fprintf(OutputFile, "This is your log file.\n");
 fflush(OutputFile); /* always put this in when you want

 immediate writing to disk */
 fclose(OutputFile);
Note: fflush() is used to suspend program action until disk I/O is complete. If this statement is not in your program, the program may terminate before the output is actually written to your log file. Note also, however, that using this statement will tend to slow down the execution of your program since program execution is delayed.
#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);
The mode string used in calls to fopen is one of the following values:

Value
Description

r
Open for reading only.

w
Create for writing. If a file by that name already exists, it will be overwritten.

a
Append; open for writing at end-of-file or create for writing if the file does not exist.
r+
Open an existing file for update (reading and writing).
w+
Create a new file for update (reading and writing). If a file by that name already exists, it will be overwritten.
a+
Open for append; open (or create if the file does not exist) for update at the end of the file.
Macros
Before compilation, C programs are generally run through a preprocessor. The processor strips out comments, processes compiler/preprocessor directives, and expands macros.
Directives are preceded by a pound sign, “#”. We have already seen the #include directive telling the compiler to include another file during compilation.
We can also use #define, #ifdef, and #ifndef to do conditional compilations. For example, some C functions in UNIX will be different in Windows or one will be present in one and absent in the other. To write code for both systems, one could do the following, and either define UNIX with a #define, or not:
#ifdef UNIX

 /* 5 lines of simple UNIX code might go here */

#else /* WINDOWS */
 /* 40K lines of convoluted Windows code goes here */

#endif

We can also use it to comment out large sections of code:

#ifdef 0

 /* code to comment out goes here */

#endif

What’s the difference between

#define print_stuff() printf(“Here’s”); printf(“Stuff.”);

and
void print_stuff(void)
{ printf(“Here’s”); printf(“Stuff.”); }

used in a program?
Macros can also be used to substitute text, making a program easier to read. For example, one can use macros to define constants used in a program. (It’s convention to write constants in all upper case.)
#define FALSE 0

#define TRUE !FALSE

#define UCHAR unsigned char

#define PI 3.1415926

You can even use macros to define functions takings arguments:
#define DEBUG

#ifdef DEBUG

 #define DebugPrint(str) fprintf(Outfile,str);

#else

 #define DebugPrint(str)

#endif

#define sqrt(x) pow(x, 0.5)

Warning about Macros
Macros do nothing more than simply substitute text in your code. Therefore, a programmer must be very careful when writing macros. Consider the following:

#define f1(x,y) (x*y)/(x+y)

 float f2(float x, float y)

 { return (x*y)/(x+y);

}

float a, b, c, d;

 a = 1;

 b = 2;

 c = f1(++a,b);

 printf("a = %f, c = %f\n", a, c);

 a = 1;

 b = 2;

 d = f2(++a,b);

 printf("a = %f, d = %f\n", a, d);
What will a and c and d be?
The statement d = f2(++a, b) increments a once, to give:

d = f2(++a,b) = (2*2)/(2+2) = 1.
Notice, however, that c = f1(++a,b) does the following, since macros substitute text. The value of c can be various answers, NONE of which is correct, and a is incremented twice, equaling 3 after execution!
 c = (++a*b)/(++a+b);

So c equals (1+1)*2 / ((2+2)+1) = 4/5 = 0.8 if the increment is done first, or c equals (3*2)/(2+2) = 6/4 = 1.5, or c equals (3*2)/(3+2) = 6/5 = 1.2.
Another Macro warning:

Consider the following. You define a print statement to print both to the screen (console/stdout) and a file.

#define Print1(x); printf(x); flush(stdout);

 fprintf(fout,x);fflush(fout);

Then you use it as below:

 Print1("Work");

 for (res=0;res<RESOURCES-1;res++) Print1(" ");

 Print1("Finish\n[");

What happens?

Function Prototyping
ANSII C requires that all functions be prototyped—that is defined before usage. The prototype consists of the function name, the parameters/arguments and type used, and the type of return value.
Sometimes a compiler may generate code under assumptions about a library function whose prototype is not declared explicitly by including the proper header file. This may cause severe problems during execution and should be avoid by always including the appropriate header files. Compilers may also assume the prototype (if not given) is declared by the first instance the function is called. This can lead to a programmer pulling their hair out. Don’t lose your hair—prototype your functions.
Names of arguments are optional in a prototype, but should be used anyway for better readability.

float power(float base, int exponent);

is equivalent to

float power(float, int);

Including and Linking
The #include compiler directive can be used to include header files that contain variable and structure declarations and function prototypes. This is very handy when a program’s code contains many source files which use the same functions and variables.
It may be advantageous for you to create your include file such as “mydefs.h” which contain definitions you use frequently. Consider the file below:

#ifndef _MYDEFS_H
#define _MYDEFS_H

 #include <stdio.h>

 #include <math.h>

 #define FALSE 0

 #define TRUE !FALSE

 #define sqrt(x) pow(x, 0.5)

 struct IN
 { double Real;

 double Imaginary;

 } ImaginaryNumber;

#endif /* _MYDEFS_H */
Parameter Passing in C
Parameters can be passed two different ways in C.
Parameters can be passed by-value, which means a copy of the value is passed to the function, and changes made to that variable are only seen in that function.
Parameters can also be passed by-reference (by address), which means a pointer to the actual variable is passed to the function, and any changes made to that variable are for the entire scope of that variable.
Opaque Types
To provide some sort of encapsulation in C, opaque types can be used which make the actual definition of type invisible to the client using the data structure. Clients always see the (void *) type which gives them no information about the actual structure of the data.

There are two definitions of opaque types: public, or those used by the client, and private, or those used inside functions implementing the type.

Once opaque types are declared, clients can then indirectly use the structures by calling “member functions” using the opaque type, but with only having the access granted to the client by the programmer.
Opaque Type Example
>>>>>>>>> header file, for client >>>>>>>>>>>>>>

#include <malloc.h>

#include <string.h>

#include <stdio.h>

typedef void *OpaqueType; // pointer to an Opaque Type

OpaqueType Opaque_Create(int a, char *s);

void Opaque_Print(OpaqueType a);
>>>>>>>>>>>>>>>> implementation file >>>>>>>>>>>>
#include "opaques.h"

typedef struct OpaqueType

{ char *Name; int ID;

} *ptrOpaqueType;

OpaqueType Opaque_Create(int ID, char *s)

{ ptrOpaqueType ptrOT = (ptrOpaqueType)malloc(sizeof(struct OpaqueType));

 ptrOT->Name = (char*)malloc(strlen(s)+1);

 sprintf(ptrOT->Name, s);

 ptrOT->ID = ID;

 return ptrOT; // Don't need a pointer cast here

}

void Opaque_Print(OpaqueType OT)

{ ptrOpaqueType ptrOT = OT;

 printf("Name = %s, ID = %d\n", ptrOT->Name, ptrOT->ID);

}
>>>>>>>>>>>>>>>> client file >>>>>>>>>>>>
#include "opaques.h"

void main(void)

{

 OpaqueType OT;

 OT = Opaque_Create(25, "Bill's Opaque Type");

 Opaque_Print(OT);

}
Warning about using Opaque Types

A common mistake is to forget struct when allocating memory. For example:
#include <malloc.h>

#include <stdio.h>

typedef void *OpaqueType; // pointer to an Opaque Type

#define BYTES 20

typedef struct OpaqueType

{ char Byte[BYTES];

} *ptrOpaqueType;

ptrOpaqueType ptrGood, ptrBad, ptrUgly;

//---
void main(void)

{ int i;

 ptrBad = (ptrOpaqueType) malloc(sizeof(OpaqueType));

 ptrUgly = (ptrOpaqueType) malloc(sizeof(ptrOpaqueType));

 ptrGood = (ptrOpaqueType) malloc(sizeof(struct OpaqueType));

 printf("sizeof(OpaqueType) = %d\n", sizeof(OpaqueType));

 printf("sizeof(ptrOpaqueType) = %d\n", sizeof(ptrOpaqueType));

 printf("sizeof(struct OpaqueType) = %d\n\n",
 sizeof(struct OpaqueType));

 printf("&ptrGood= %d, &ptrBad= %d, &ptrUgly= %d\n", &ptrGood,
 &ptrBad, &ptrUgly);

 printf(" ptrGood= %d, ptrBad= %d, ptrUgly= %d\n\n", ptrGood,

 ptrBad, ptrUgly);

 for (i=0; i<BYTES; i++) ptrBad->Byte[i] = i;

 for (i=0; i<BYTES; i++) ptrUgly->Byte[i] = i;

 for (i=0; i<BYTES; i++) ptrGood->Byte[i] = i;

 PrintStructs();

 for (i=0; i<BYTES; i++) ptrGood->Byte[i] = i;

 for (i=0; i<BYTES; i++) ptrBad->Byte[i] = i;

 for (i=0; i<BYTES; i++) ptrUgly->Byte[i] = i;

 PrintStructs();

 getchar();

}

void PrintStructs(void)

{ int i;

 for (i=0; i<BYTES; i++) printf("%2d ", ptrBad->Byte[i]);

 printf("\n");

 for (i=0; i<BYTES; i++) printf("%2d ", ptrUgly->Byte[i]);

 printf("\n");

 for (i=0; i<BYTES; i++) printf("%2d ", ptrGood->Byte[i]);

 printf("\n\n");

}

Output

sizeof(OpaqueType) = 4

sizeof(ptrOpaqueType) = 4

sizeof(struct OpaqueType) = 20

&ptrGood= 4203092, &ptrBad= 4203096, &ptrUgly= 4203100

 ptrGood= 6700692, ptrBad= 6700660, ptrUgly= 6700676

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

16 17 18 19 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Compiling Modules
When working with library modules you create, compilation can be done in various ways. For example, you could compile both files at once using the command
gcc –o project.exe project.c opaques.c
Or you could compile the library separately, and then compile the project.

gcc –c opaques.c
gcc –o project.exe project.c opaques.o
Makefiles
Makefiles can be extremely helpful when developing software containing many code modules and compiling for different platforms or targets. A makefile is simply a file containing compiler and linker directives which can be easily changed and reduces command line typing.
CC = gcc

CFLAGS = -g

HEADERS = header1.h header2.h header3.h

SOURCES = code1.c code2.c code3.c code4.c

OBJECTS = project1.o code1.o code2.o code3.o code4.o
project2: $(OBJECTS) $(HEADERS)

 $(CC) $(CFLAGS) $(OBJECTS)
Naming Conventions
Many times it will be advantageous for you to use a naming convention in order to more easily identify what storage class a particular variable is associated with without having to hunt for it’s declaration.
There are many such conventions (Microsoft uses Charles Simonyi’s “Hungarian Notation.”) and some quite arbitrary, but all worthwhile. You might consider creating your own so that debugging software becomes less stressful. For example, you may wish to use something like the following,
unsigned char bByte;

int iNumberOfElements;
char strName[100];

int *iptrElement;

void *vptrOpaqueType;
float fAverage;

typedef struct TBigStructure

{...

}*ptrBigStructure;

Functions

Following is an abridged list of commonly used functions you may not be aware of, and may be useful in the future. Note, check the portability of these functions for your operating system.
String/Memory/Conversions
int isalpha(int c);
int isalnum(int c);

void *memcpy(void *dest, const void *src, size_t n);

void *memmove(void *dest, const void *src, size_t n);
char *strcat(char *dest, const char *src);

char *strncat(char *dest, const char *src, size_t maxlen);char *strchr(const char *s, int c);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t maxlen);
char *strset(char *s, int ch);
char *strnset(char *s, int ch, size_t n);

size_t strspn(const char *s1, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strupr(char *s);

int tolower(int ch);
int toupper(int ch);
int atoi(const char *s);
double atof(const char *s);
long atol(const char *s);

char *fcvt(double value, int ndig, int *dec, int *sign);
char *ecvt(double value, int ndig, int *dec, int *sign);
char *itoa(int value, char *string, int radix);
char *ltoa(long value, char * string, int radix);
Console I/O

int getchar(void);
int putchar(int c);

int getch(void);
int putch(int c);

char *gets(char *s);
int puts(const char *s);

int scanf(const char *format[, address, ...]);

int printf(const char *format[, argument, ...]);
File I/O

FILE *fopen(const char *filename, const char *mode);
int getc(FILE *stream);

int putc(int c, FILE *stream);

int fscanf(FILE *stream, const char *format[, address, ...]);

int fprintf(FILE *stream, const char *format[, argument, ...]);

int fflush(FILE *stream);

int fclose(FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);

size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

int fseek(FILE *stream, long offset, int whence);

int fgetpos(FILE *stream, fpos_t *pos);

int ferror(FILE *stream);

void rewind(FILE *stream);

Dynamic Allocation

void *alloca(size_t size);
void *malloc(size_t size);
void *realloc(void *block, size_t size);

void free(void *block);

Miscellaneous
int rand(void);
int random(int num);
void randomize(void);
void longjmp(jmp_buf jmpb, int retval);
int setjmp(jmp_buf jmpb);
void (_USERENTRY *signal(int sig, void (_USERENTRY *func)

 (int sig[, int subcode])))(int);
char *asctime(const struct tm *tblock);double
difftime(time_t time2, time_t time1);
void ftime(struct timeb *buf);
time_t time(time_t *timer);
	/****** f1.h ******/

#ifndef _F1_H

#define _F1_H

#include "f2.h"

#include "f3.h"

extern int v1;

struct s

{ int i;

 int j;

};

extern struct s s1;
int func1(int i);

#endif

	
	/****** f2.h ******/

#ifndef _F2_H

#define _F2_H

#include "f1.h"

extern int v2;

int func2(int i);

#endif

	
	/****** f3.h ******/

#ifndef _F3_H

#define _F3_H

#include "f1.h"

extern int v3;

int func3(int i);

#endif

	
	
	
	
	

	/****** f1.c ******/

#include "f1.h"

int v1 = 1;

struct s s1 = {2, 3};

int func1(int i)

{

 return i*10;

}

/*******************/

void main(void)

{ int i;

 i = func1(2);

 i += func2(3);

 i += func3(4);

 printf("i=%d", i);

 getchar();

}
/*******************/

	
	/****** f2.c ******/

#include "f2.h"

int v2 = 2;

/*******************/

int func2(int i)

{ int j;

 j = func1(i+v1);

 return j + v2;

}
/*******************/

	
	/****** f3.c ******/

#include "f3.h"

int v3 = 3;

/*******************/

int func3(int i)

{

 i += s1.i;

 return i + v2;

}
/*******************/

_1103370687.unknown

_1103715049.unknown

