SEMI- AUTOMATED FEATURE BASED IMAGE MORPHING USING
GRAPH CUTS

Jithu Menon ,Phuong Pham and Pooja Jayakumar
Electrical and Computer Engineering

Clemson University, Clemson, SC

Abstract
 Image metamorphosis, or morphing for short, is commonly referred to as the animated transformation of one digital image to the other. We are implementing the feature based Image morphing algorithm by Beier and Neely. In this method the animator has to select the appropriate feature points or lines to morph the image, making it a tedious and time consuming process. This is the main reason that we decided to explore the various methods by which the feature selection process could be automated. Hence we have extended this algorithm by trying to automate the feature selection process using graph cuts. Graph cuts is a method that can be used for minimizing an energy function optimally and has been applied in order to implement stereo matching. We have tried to make the best possible use of the concept of stereo matching using graph cuts in order to find the best feature points between the two images to implement the morph. We have also explored other methods of automated feature line selection for field morphing that have already been implemented.

INTRODUCTION
 Morphing is an image processing technique used for the metamorphosis from one image to another. The idea is to get a sequence of intermediate images which when put together with the original images would represent the change from one image to the other. One of the earliest implementation of image morphing can be seen in Michael Jackson’s video Black or White.
The whole metamorphosis from one image to the other consists of fading out the source image and fading in the destination image. Thus, the early images in the sequence are much like the source image and the later images are more like the destination image. The middle image of the sequence is the average of the source image distorted halfway toward the destination image and the destination image distorted halfway back to the source image. This middle image is rather important for the whole morphing process. If it looks good then probably the entire animated sequence will look good. For example, when morphing between faces, the middle "face" often looks strikingly "life-like" but is neither the first nor the second person in the image.

From the various morphing algorithms that are available, we have chosen The Field Morphing algorithm based on "Feature-Based Image Metamorphosis" by Thaddeus Beier and Shawn Neely [1].
The Beier and Neely algorithm is based on fields of influence surrounding 2-dimensional control primitives. In general there exist two different ways of image warping: 1. Forward mapping scans through the source image pixel by pixel, and copies them to the appropriate place in the destination image.2. Reverse Mapping goes through the destination image pixel by pixel, and samples the correct pixel from the source image. The advantage of this algorithm is that every pixel of the destination image gets set to something appropriate. This deformation method will be used with field morphing.
One of the most time consuming tasks in morphing is selecting the points or lines in the initial and final image so that the metamorphosis is smooth and natural. An algorithm to automatically select the morphing markers would save a great deal of time. In most of the algorithms that have already been implemented, the feature line selection from the source and destination image is done manually. The animator has to decide which feature points he would like to select for morphing the image.
 In the course of our research for this project, we came across quite an array of approaches that have been employed in the past to tackle the problem of automatic feature selection for face - morphing. One of the methods that has already been implemented is feature selection using Laplacian edge detection [2]. This has two main disadvantages. The first problem is the difference in contrast between the two images. This causes the edges of the eyes in one image to be of different amplitude from the eyes in another image, making it very difficult to match the two pairs. Secondly, translation differences between the images make it difficult to identify which edge should be mapped to which other edge. The question is one of whether the edge is an eyelid, an eyebrow, or a lip.
The other method that we happened to come across was feature line selection using Hough transform. This required making considerations for bad and good lines. The problem with normal Hough transform line detection is that if a number of broken lines are collinear then the corresponding accumulator cell will contain a very high value. Due to this, in automatic feature detection we started getting a number of bad or unwanted lines. These lines led to poor feature correspondence and finally poor quality of the automatically morphed image.
In addition, we came across an assortment of heuristics - based techniques, which make use of skin detection, face detection [3, 4], eye detection [5], lip detection etc. All of these approaches met with varying degrees of success. In this paper, we describe our attempt to automate morphing using graph cuts, a method which has never been used before to solve this problem, as far as we know.

In order to morph the source image into the destination image, we require corresponding feature points or lines on both the images. We have succeeded in making the feature selection process semi-automatic. Ten ‘best’ feature points from the source image are manually selected by the user, with specific focus on the eyes and the lips. A disparity map of the two images is computed using the graph cuts algorithm [8,9],thus giving the feature points on the destination image corresponding to the ones selected by the user in the source image. Once the feature point selection is completed, we run the field based image morphing algorithm on the images in order to achieve the required results.
Field Morphing Algorithm
Transformation with One Pair of Lines

One basic concept of field morphing consists of a pair of lines, one defined relative to the source image and the other defined relative to the destination image. These lines define a co-ordinate mapping from the destination image pixel co-ordinate X to the source image pixel co-ordinate X’ resulting in a line PQ in the destination image and P’Q’ in the source image .The value u is the position along the line, and v is the distance from the line. The value u goes from 0 to 1 as the pixel moves from P to Q, and is less than 0 or greater than 1 outside that range. The value v is the perpendicular distance in pixels from the line. If there is just one line pair, the transformation of the image proceeds as follows. For each pixel X in the destination image, we find the corresponding u,v and then we find the X’ in the source image for that u,v. Hence these feature lines creates a reverse mapping, i.e. we calculate pixel by pixel the destination image by sampling the correct pixel from the source image i.e destinationImage(X) = sourceImage(X’).
[image: image1.jpg]P
Destination Imag

Source Image

The following is calculated: [image: image2.png]

[image: image3.png]v Perpendicular(Q—F')

Te-+1

X'= P (Q-P) +

Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A weighting of the coordinate transformations for each line is performed. A position Xi' is calculated for each pair of lines. The displacement Di = Xi' - X is the difference between the pixel location in the source and destination images, and a weighted average of those displacements is calculated. The weight is determined by the distance from X to the line. This average displacement is added to the current pixel location X to determine the position X' to sample in the source image. The single line case falls out as a special case of the multiple line case, assuming the weight never goes to zero anywhere in the image. The weight assigned to each line should be strongest when the pixel is exactly on the line, and weaker the further the pixel is from it.
The equation we use is
[image: image4.png]

where length is the length of a line, dist is the distance from the pixel to the line, and a, b, and p are constants that can be used to change the relative effect of the lines. If a is barely greater than zero, then if the distance from the line to the pixel is zero, the strength is nearly infinite. With this value for a, the user knows that pixels on the line will go exactly where he wants them. Values larger than that will yield a more smooth warping, but with less precise control. The variable b determines how the relative strength of different lines falls off with distance. If it is large, then every pixel will be affected only by the line nearest it. If b is zero, then each pixel will be affected by all lines equally. Values of b in the range [0.5, 2] are the most useful. The value of p is typically in the range [0, 1]; if it is zero, then all lines have the same weight, if it is one, then longer lines have a greater relative weight than shorter lines. The multiple line algorithm is as follows:
For each pixel X in the destination

 DSUM = (0,0)

 weightsum = 0

 For each line Pi Qi

 calculate u,v based on Pi Qi

 calculate X'i based on u,v and Pi'Qi'

 calculate displacement Di = Xi' - Xi for this line

 dist = shortest distance from X to Pi Qi

 weight = (lengthp / (a + dist))b

 DSUM += Di * weight

 weightsum += weight

 X' = X + DSUM / weightsum

 destinationImage(X) = sourceImage(X')
Note that because these "lines" are directed line segments, the distance from a line to a point is abs(v) if 0 < u < 1, the distance from P to the point if u < 0, and the distance from Q to the point if u > 1.

[image: image5.png]2

Destinationlmage

Figure 3: Multiple line pairs

In the above figure, X' is the location to sample the source image for the pixel at X in the destination image. That location is a weighted average of the two pixel locations X1' and X2', computed with respect to the first and second line pair, respectively

Morphing Between Two Images
A morph operation blends between two images, I0 and I1. To do this, we define corresponding lines in I0 and I1. Each intermediate frame I of the metamorphosis is defined by creating a new set of line segments by interpolating the lines from their positions in I0 to the positions in I1.
[image: image6.png]

Both images I0 and I1 are distorted toward the position of the lines in I. These two resulting images are cross- dissolved throughout the metamorphosis, so that at the beginning, the image is completely I0 (undistorted because we have not yet begun to interpolate away from the line positions associated with I0). Note that there is a chance that in some of the intermediate frames, two lines may cross even if they did not cross in the source images. [image: image7.png]

[image: image8.emf]

 [image: image9.emf]

 [image: image10.emf]

Source middle images destination
Graph cuts
Many tasks in computer vision involve assigning a label (such as disparity) to every pixel. A common constraint is that the labels should vary smoothly almost everywhere. These tasks are naturally stated in terms of energy minimization. . Graph cuts is a method that can be used for minimizing an energy function optimally and has been applied in order to various computer vision problems such as stereo matching [8]. Given multiple images of a scene, the goal of visual correspondence is to determine which image points are projections of the same world point. In the case of stereo the images are taken at the same time by different cameras, while in the case of motion the images are taken by the same camera at different times. Correspondence is a crucial step in recovering 3D geometric information about a scene from multiple images. The problem of correspondence is often solved by minimizing an energy function that matches similar-looking pixels (in terms of intensity or color, for example), while penalizing the discontinuities in order to preserve piecewise-continuity. The result of such a search is the best mapping from pixels to displacements, according to the cost function.[9]
EXPERIMENTAL RESULTS
The source and destination image with the feature points selected are as show below:

[image: image11.png]

The disparity map for the two images from graph cuts is as shown below:

[image: image12.png]

Disparity Map
The sequence of images obtained from the implementation of the semi automated feature based morphing technique is shown below.

[image: image13.png]

The source (first image in sequence) and the destination image (last image in sequence) are both rectified images. As can be observed, a very smooth and natural transition between the source and destination image is obtained (Left to right, Top to bottom).
CONCLUSION
Beier-Neely implementation of the feature based field morphing is definitely a stable and an effective method for image morphing, the only drawback being that the user would have to manually select the feature points. This is time consuming and the algorithm is slow. In case the user does not select the corresponding feature points on both the images, the morphing between the source and destination image will not take place efficiently.
Although the technique we have implemented is semi automated and works perfectly well for the Beier -Neely algorithm once the feature points on just the source image have been selected, this would work only for rectified images. This is one of the major limitations of the algorithm that is presented in this paper.
Work is still in progress to make the algorithm fully automated. Success has been achieved in detecting the eye and lip coordinates, and will be discussed in a future paper.
REFERENCES

1) Beier, T., Neely, S., Feature-Based Image Metamorphosis. In “SIGGRAPH ’92” (Chicago, July 26-31, 1992). Published as “Computer Graphics”, 26(2) (July 1992), pp. 35-42.

2)http://www.owlnet.rice.edu/~elec539/Projects97/morphjrks/themainpage.html
3) http://www.cs.princeton.edu/~jlawrenc/morph
4) Rowley, H.A., Baluja, S., Kanade, T., Neural Network-Based Face Detection. (PAMI, January 1998).

5) http://www.stanford.edu/~jacobliu/368Report/ee368_finalReport.html

6) Fast Approximate Energy Minimization via GraphCuts. Yuri Boykov, Olga Veksler, Ramin Zabih. In International Conference on Computer Vision (ICCV), vol. I, pp. 377-384, 1999
7) Correspondence as Energy-based

segmentation Stanley T. Birchfield,Clemson University,Carlo Tomasi Dpt. of Electrical and Computer Engineering Department of Computer Science, Duke University

