Image Synthesis for a CT Simulator

Hariprasad Kannan, Masters Student, ECE Department, Clemson University, SC

Abstract
X-ray Computed Tomography (CT) is a fundamental medical imaging technique. A computer simulation of such imaging processes will have huge reception in teaching and research. Any imaging process can be split into data acquisition and image reconstruction. This work is a small step in simulating the data acquisition part of a basic CT modality.
1 Introduction

X-ray Computed Tomography (CT)2 revolutionised medical imaging. It is the technique of estimating the interior of objects from the measurements of radiation projected through the object. It consists of two modules - data acquisition and image reconstruction. This process has been the bed rock for most 2D and 3D imaging techniques developed later. Building simulators of such imaging systems have tremendous potential in teaching and research. There are existing CT simulators3. In such simulators, an image synthesis module which will simulate the imaging hardware is needed. The input can be taken from a database of images. Here I have attempted to create a simple image synthesis algorithm. The original part of this work is that I have independently developed this method based on theory. I later compared results with other simulators. The essence of what I have done is digitally model some physical phenomena like radiation & attenuation and geometric shapes like straight lines & circles so that a computer can use them. I have eschewed using simplifying Matlab functions. So, portability to C and hence, a commercial product is easier to achieve. The task appears deceptively simple. The theory is straightforward but the implementation has been a challenge. At each step of the process, about three different methods were tried before the best way was found.

2 Mathematical Preliminaries

2-1 The Radon Transform

At the heart of CT is the Radon transform1. For an image function f(x,y) the Radon transform pφ(x’) is given by the line integral along a line that is parallel to axis y' at a distance x'. Where (x',y') is obtained by rotating (x,y) by an angle φ (refer Figure 1).

2-2 Sinogram

The Radon transform maps data from (x,y) to (φ,x'). To have a physical intuition of how this mapping works consider a point q at a distance r and angle θ in (x,y). It maps to x' = r.cos(φ- θ) in (φ,x'). As φ varies x' takes a sinusoidal shape. Such a map is called a Sinogram1, as shown in Figure 2.

	[image: image1.png]

Figure 1: The Radon Transform
	[image: image2.png]vt

Figure 2: Sinogram

3 Finding a straight line joining any two points

Finding a straight line joining any two points in a digital matrix is an important tool for our implementation. The catch here is that the steps should be digital - pixels of an image. Using 'linspace' and rounding off the results will give the required result in Matlab. I have come up with a general algorithm to do the same.
Coming up with suitable criteria to do this task was tricky. If just the distance to the end point was minimized as the line progresses results similar to Figure 3 were only obtained. This is because the point 45° from the given point is always closer to the end point than other neighbors and will always be chosen till the point along the horizontal (or vertical) is nearer. Finding the equation of the line joining the two points and finding those points which best satisfy the equation will just result in endless oscillations between the first and second point. A Combination of these two works. The next point to be chosen should give a low error (need not be the least) in the line equation and should be nearer to the final point than the previous point. Then I noticed a peculiar behavior - certain pairs of points where not joined by straight lines. The property of these points which led to this error is their slope. For all slopes greater than 1 this happens. So, I transformed the problem to one of finding the straight line of slope less than 1. To do this, I transferred the origin to the first point and then found the image of the end point about the 45° line. Now the slope of the line is less than 1 in the new coordinate system. The set of points which will join these two points is found and mirrored about the 45° line. Then they are all shifted to the old coordinate system. Now we are in a position to generate straight lines at all angles except the vertical. In that case, the slope is infinity and hence, the line equation cannot be used like in the other cases. So, the y coordinate of the starting point alone was updated with a step of +/- 1 till the end is reached.
One property about these sets of points is that the number of such points in a set varies according to the slope of the line. Some slopes can be traversed with fewer digital steps than others. What you are using this straight line for, deems appropriate modifications.

If positions of a straight 1-D array of devices are to be modeled, then each set of points should have the same number of points (devices). So, once all the set of points have been found out, one has to pick an equal number of samples from each set. It is not possible to fix the number of samples in the beginning itself then the straight line is not properly found. Hence, as many points as possible join the two points and then they are sampled.

If a line integral is modeled, the varying sizes won’t affect the result very much. One can retain the sets of points as they are.

4 The Structure of the Imaging Hardware
Consider a 1-D row of x-ray sources. The sources are collimated4 i.e., rays are parallel. Suppose x-ray is shined through an object by these sources. And the out coming rays are captured by a row of sensors parallel to the row of sources, on the other side of the object. This is the projection image corresponding to that row of sensors at that orientation. Each value is the output intensity of that x-ray. The input intensity of the x-ray (Ni) is related to its output intensity (No) by the following equation4,
[image: image3.png]N,
dx=In—"
j,u(x)x nNO

Where μ(x) is the linear attenuation of the x-ray by the material at x. The attenuation is caused by three factors: photoelectric effect, Compton scattering and pair production. I won’t get into those details here.

As this row of sensors is taken around the object at regular angular intervals we will get a set of 1-D values. The hardware stacks these next to each other to form an image which is given to the reconstruction module.

5 Modeling the Imaging Process

Each value in the final output image is proportional to the line integral along its x-ray path through the object. So, for a given angle φ of the source (and detector) the detected value at position x' (say) is proportional to the integral through x'. This is the Radon transform at given φ and x'. The collective projection data is the mapping of the points in (x,y) of the cross section to (φ,x'). Hence, the cumulative projection data is a Sinogram.

The sources should be placed to fulfill the Completeness Criterion: There exists at least a source on any line intersecting a cross-section.

An array of 1-D sources can be modeled as points on a straight line. If this straight line is rotated all around at a fixed distance from the origin, it satisfies the completeness criterion. It appears to use the circumference of a circle as a ‘track’ (refer Figure 5).
By constructing this circle, all the array positions can be inferred. The length of the array determines the maximum width of the object that can be imaged. The radius of the circle should be at least (2)½ times this width for the object to fit in. I have constructed this bounding circle with a radius of twice the maximum possible width. It is inefficient to come up with the points on this circle in Cartesian coordinates. Then they have to be ordered seperately to be useful. Using Polar coordinates is more intuitive, as shown in Figure 6. The solid line represents a given position of the array at an angle θ to the x-axis. It subtends an angle of 60° at the center because the outer radius is twice the maximum width, which is also the width of the source array.

The start and end coordinates can hence be found as follows:

 start = (r + r.cos(φ+θ), r + r.cos(φ+θ))

 end = (r + r.cos(φ-θ), r + r.cos(φ-θ))

All the start and end points are generated by varying θ from 0 to 359. (Choosing a step of 1 degree gives really good results.)

	[image: image4.png]

Figure 5: The set of all arrays with

Array no. 360 highlighted as an example.
	[image: image5.png]

Figure 6: Generating the start and end points of each array.

By using the line construction algorithm, each pair of start and end points are joined. As said before they have to be sampled to give an equal number of points in each set. Since, each point in the set denotes an x-ray source.

To find the output values, we need to model a row of sensors parallel to each row of sources. By taking an even number of array positions around the object, an array half way away from another can double up as its detector. Our task is to draw parallel lines between ith and (180+i)th array. Summing up the image values along a given line will give the required line integral and hence, the measurement at the detector. The attenuation property of the material at a given point is given by its gray scale value.

Thus we have three-sixty 1-D vectors. Stacking them next to each other gives us the required Sinogram.

6 Results

The algorithm in Matlab takes 30 mins to run in a PC equipped with a 2.8 GHz Pentium 4 processor and 512 MB RAM.

The algorithm was first tested on a simple 2-D cross section drawn manually, shown in Figure 7. It is an ellipse with two differently shaped circular dots at varying positions from the center. The resulting Sinogram is shown in Figure 8. It seems to tally intuitively. Two sinusoidal waves of different thicknesses correspond to the dots and the elliptical border will lead to a vase like structure due to its varying axis length.

Another more complicated image and its Sinogram (they have truncated the Sinogram for some reason) were taken from http://bigwww.epfl.ch/demo/ctreconstruction/example.html, as shown in Figures 9 and 10. The Sinogram computed by our algorithm (shown in Figure 11) matches very well with that provided.
7 Conclusions
The computer model of a 2-D collimated x-ray imaging system has been achieved with good accuracy. This is just the tip of the iceberg. Future work can include incorporating realistic physical effects, noisy images, modeling other kinds of radiation, variable resolution, other types of device arrangements, extension into 3-D etc.

Implementing the reconstruction module appears to be a greater challenge.

	[image: image6.png]

Figure 7: A sample image.
Figure 8: It’s Sinogram
	[image: image7.png]

	[image: image8.png]

	[image: image9.png]

	Figure 9: Sample Image
Figure 10: Their Sinogram

Figure 11: Our Sinogram

	[image: image10.png]

8 References

1. Z. H. Cho, J. P. Jones, M. Singh. Foundations of Medical Imaging. A Wiley-Interscience publication. ISBN 0-471-54573-2. U.S.A.(1993)

2. G. N. Hounsfield. A method of and apparatus for examination of a body by radiation such as X-ray or gamma radiation. British Patent No. 1283915. London (1972).
3. CTSim - The Open Source Computed Tomography Simulator. www.ctsim.org
4. R. D. Evans. The Atomic Nucleus. New York: McGraw Hill, 1955.
5. H. O. Anger. Scintillating Camera. Rev. Sci. Instrum. 29:27 (1958).
PAGE
4

