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Abstract—Variational approaches have been proposed for solving
many inverse problems in early vision, such as in the computation of
optical flow, shape from shading, and energy-minimizing active con-
tour models. In general however, variational approaches do not guar-
antee global optimality of the solution, require estimates of higher or-
der derivatives of the discrete data, and do not allow direct and natural
enforcement of constraints.

In this paper we discuss dynamic programming as a novel approach
to solving variational problems in vision. Dynamic programming en-
sures global optimality of the solution, it is numerically stable, and it
allows for hard constraints to be enforced on the behavior of the so-
lution within a natural and straightforward structure. As a specific
example of the efficacy of the proposed approach, application of dy-
namic programming to the energy-minimizing active contours is de-
scribed. The optimization problem is set up as a discrete multistage
decision process and is solved by a ‘“‘time-delayed’’ discrete dynamic
programming algorithm. A parallel procedure is discussed that can
result in savings in computational costs.

Index Terms—Active contours, contour extraction, deéformable
models, dynamic programming, variational methods.

I. INTRODUCTION

N many instances in computer vision research, the need

arises to determine a surface or a contour having opti-
mal properties amongst a large space of functions. For
example, one might be interested in finding the smoothest
surface which is close to the available data and which at
the same time preserves the discontinuities in such data.
Approaches to problems of this kind are mostly determin-
istic and involve solutions to variational principles [7],
[27], [32], [34]. Stochastic formulations based on prob-
abilistic models such as the Markov random fields and
involving MAP estimation techniques have also been pro-
posed [15], [16], [24]. ‘

Class of vision problems which have been formulated
using smoothness models include as examples: optical
flow [21], [22], visible surface reconstruction [8], [18],
[24], [33], shape from shading [20], [22], edge detection
{25], and energy-minimizing active contour models [23].
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Invariably, an algorithmic solution involves derivation of
an objective function and optimization of the derived
equation for finding an appropriate solutiori. One deals
with minimizing an objective function: using variational
techniques [20], {21], direct techniques [1], [18], [31], or
stochastic relaxation techniques [16], [24].

This paper discusses a novel optimization framework
for vision problems where the derived equation may be
nonconvex. In the past few years, vision researchers have
reported the need for dealing with nonuniqueness and lo-
cal minima. This problem is extremely important and
commonly arises when there is a need to minimize an en-
ergy function of some form [38]. Dynamic programming
is an optimization approach that simply stated, bypasses
local minima. Application of dynamic programming to
variational problems are focused upon in this paper, and
the relationship between variational apptoaches and dy-
namic programming methods are discussed in detail. For
the univariate variational problem, dynamic programming
is used to optimize the continuous problem, and a discus-
sion on dynamic programming treatment of the bivariate
variational problems is included. The discrete form of dy-
namic programming is also used to optimize the active
contours. For minimizing the energy of the active con-
tours, we have devised a ‘‘time-delayed’” discrete dy-
namic programming algorithm. The proposed approach
provides necessary and sufficient conditions for optimal-
ity of solution functions. Dynamic programming has pre-
viously been applied to computer vision (see for example
[14], [26], [37]). We address dynamic programming so-
lutions of variational problems.

II. VARIATIONAL METHODS IN VISUAL OPTIMIZATION

The primary approach to solving problems involving
functional optimization in computer vision has been cal-
culus of variations [10], [19], [29]. In order to solve such
problems with variational methods, a smoothness con-
straint is added to a physical equation, a variational inte-
gral is derived, and the corresponding Euler-Lagrange
partial differential equation is solved iteratively.

In this section, we first state the Euler-Lagrange con-

dition and some additional necessary conditions that clas-

sical variational theory has developed. We then discuss
issues that are of concern when using variational formu-
lations. These issues are related to optimality, stability,
convergence, and constraints on variational problems.
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A. Necessary Conditions

Let us review the variational techniques and the several
optimality conditions that calculus of variations has de-
veloped [10], [11], [19], [29]. As will be seen, although
these conditions are all necessary, they are usually not
sufficient. Our arguments will be made for the univariate
case, where one is interested in finding a curve minimiz-
ing a functional. The arguments carry over to the bivariate
case. : '
Suppose that we can reduce the form of the visual op-
timization problem to the minimization of a functional of
the form

Xt

J(y)=S0F(x,y,y')dx. B¢

Assuming that the solution curve is unique, what we seek
is the curve that yields a number J, by equation (1), that
is smaller than the number yielded by any other admis-
sible curve. The value of J corresponding to such a curve
is called the absolute (global ) minimum of the functional
J(y) and the associated curve is the absolute (global)
minimizer. ,

Some additional definitions are in order. A weak neigh-
borhood N, of a curve Yx(x), Xp < x < xy, is the collec-
tion of all admissible curves y(x) such that the expres-
sions

[y(x) = ye(x)| = (2)
[3/(x) = ya(x)| = € (3)

hold for all x € [x,, x;] with € > 0. Notice that weak
neighborhood is a function of ¢. A curve y, (x) is said to
yield a weak relative minimum of J (y) if there exists a
weak neighborhood of y(x) such that J(ys) < J(y) for
all y(x) in the neighborhood. Waiving the requirement

imposed by (3), leads to the definition of a strong neigh-

borhood and. the corresponding concept of a Strong rela-
tive minimum.

The sets associated with absolute, strong, and weak
minimizers of an arbitrary functional create a monotoni-
cally increasing sequence of sets. The set of absolute min-
imizers is a subset of the strong minimizers and in tumn
the set of strong minimizers is a subset of the weak min-
imizers.

Suppose that we wish to test a curve y(x) to see if it
yields a weak relative minimum of the functional in (1).
We can deform the curve by choosing an arbitrary 7 (x)
so that ’ -

2(x) = y(x) + en(x) (4)

is admissible for all ¢ and n(xp) = n(x;) = 0. This class
of deformations are weak variations of the curve since
given § > 0, by choosing || sufficiently small, we can
force Q(x) to lie in the weak neighborhood, N of y(x).

Euler-Lagrange Condition: Assuming the weak vari-
ation, Euler-Lagrange equation for (1) can easily be de-

rived to be

d

dx
If a curve satisfies (5), we may have the correct answer,
that is if one exists. However, we may have found a wide
assortment of other curves as well.

Other necessary conditions exist for reducing the size
of the set of curves that satisfy the Euler-Lagrange con-
dition. Although we will not give the details of these other
existing conditions, we will state two of them, namely,
the Legendre and the Jacobi conditions. We will then state
the method of Lagrange for dealing with the constrained
variational problem. T T

Legendre Condition: It is shown in texts on variational
calculus that if we add the condition that

Fyp =0 (6)

for all x € [xy, x;], then we eliminate a number of the
weak relative maxima in the set of possible solutions.

Jacobi Condition: Jacobi in the early nineteenth cen-
tury showed that the Legendre condition is not always ef-
fective in distinguishing relative minima. His studies led
to a condition about the zeros of a solution v(x) of the
Jacobi’s equation:

F, —F, = 0. (5)

(Fry)or(s) + [Zd; Fy,y} v (x)

d
+ [a Fyy: - Fyy} v(x) =0. (7)
The condition is applied in the following manner: if v (x)
is found to satisfy the Jacobi’s equation, and if it takes on
the value of zero at x,, yet is not identically zero, and
v(x) does not take on the value of zero anywhere else in
[xo, x,1, then Legendre condition will assure weak rela-
tive minimality, given that the Euler-Lagrange equation

_ is also satisfied.

There are other existing necessary -.conditions besides
the ones that are stated here. For example Weierstrass also
has a necessary condition for strong relative minimality.

Method of Lagrange for Constrained Variational Prob-
lems: Suppose that it is desired to minimize (1) subject
to the constraints A, (x, y)=0fori=1,2, -+, m. The
approach in classical variational theory is to solve the
modified Euler-Lagrange equation '

d

— % =3,=0 (8)

subject to the constraints. The functional & in this case is
E=F+ 2 NEh(x, ). (9)

The unknown functions \ i(x) are called the Lagrange
multipliers. As can be seen from (8), the constraints 4,
must be differentiable functions in order for the method

to apply.
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A second possible form of constraint surfaces arise in

. isoperimetric problems. In this class of problems, it is
. required that (1) be minimized while the following rela-

tions hold (fori =1, - + + m):

X1
S hi(x,y,y")dx = ¢ (10)
X0
where ¢; are constants of specified value. The method of
soiution in this case is to solve (8) with
¢ =F+ 2 Nhi(x,y,5). (11)
i=

The important point here is that Lagrange multipliers
are required for constraining the solution space. As will

‘be seen, in using dynamic programming no such device

is required.

B. Issues of Concern

There are certain issues that must be addressed in re-
gards with the classical variational theory, and the com-
putations that it requires to arrive at a solution.

In many vision problems, the usual approach of re-
searchers has been to find a solution to the Euler-La-
grange equation. As stated in Section II-A, this equation
is only necessary for optimality. The danger in using nec-
essary conditions is that one can not guarantee absolute
or relative optimality; it is possible for one to obtain max-
ima instead of minima and minima instead of maxima
when using necessary conditions of variational theory. It
is also possible for the solution to be a stationary point
and satisfy the conditions stated previously. This problem
is analogous to the situation in calculus where for a point
to yield a minimum, it is necessary for the first derivative
of the function to vanish there. However, if the derivative
vanishes, it is not sufficient to conclude that the point
yields a local minimum of the function. Although, one
could use higher order necessary conditions (e.g., Jacobi,
Weierstrass), these conditions ‘are often difficult to test,
and even if they could be tested, they do not guarantee
sufficiency for the general case [12]. Classical variational
theory says very little about properties of absolute mini-
mizers. In practice, the best that it can offer is to ensure
the solution to be a relative minimum of the weak type.

A second issue of concern is to enforce possibly non-
differentiable constraints on the solution. In many vision
applications, the ability to enforce hard constraints on the
solution is required. Grimson, for example, taking the di-
rect approach to optimization has used a gradient projec-
tion algorithm for surface interpolation; enforcing as hard
constraints the available stereo disparities [18]. In case of
the variational approaches, Lagrangian-based methods
could turn the constrained problem into an unconstrained
problem. However, Lagrangian-based approaches require
1) higher dimensional spaces, since now there are more
unknowns that must be dealt with, and 2) the constraints
themselves must be differentiable. With dynamic pro-
gramming, constraints simply limit the set of admissible
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solutions and in fact reduce the computational complex-
ity.

Careful attention should be paid to a third issue of nu-
merical stability and accuracy. In using variational ap-
proaches, there is a need for estimates of higher order
derivatives of discrete data. Computing high order deriv-
atives of discrete, noisy data leads to numerical instability
due to amplification of high frequency noise content. In
the variational calculus formulation, the optimization
problem is formulated on the continuous plane and is
solved using approximate processes. Using this approach
however, solutions can become more accurate provided
that derivatives of data never become unduly large. We
will discuss the variational formulation for the active con-
tours, where there are grounds for being concerned about
numerical stability. As will be seen, dynamic program-
ming can directly be applied to the discrete grid with no
required approximations. In addition, order of derivatives
are generally lower since functionals are directly opti-
mized, and necessary conditions are not used.

Lastly, in finding numerical solutions when using vari-
ational techniques, except for some very simple cases, it-
erative techniques such as the Gauss-Seidel, or Jacobi
methods must be employed [28]. A numerical analyst must
pay careful attention to convergence issues. For the active
contours, convergence of the iterative methods will be
analyzed in Section IV.

ITI. RELATIONSHIP BETWEEN CALCULUS OF VARIATIONS
AND DyNAMIC PROGRAMMING

There is a great deal in common between variational
methods [10], [19], [29] and dynamic programming {4],
[5], [6], [11], [13]. With calculus of variations, the func-
tion is sought which has associated with it, by a given
functional, a numerical value less than that associated with
any other function in a specified set of functions. Calculus
of variations considers the extremal function to be a locus
of points and attempts to determine this function by means
of the Euler-Lagrange equation.

The approach of dynamic programming is to solve the
optimization problem by studying a collection, or family
of problems containing the particular problem as a mem-
ber. This is known as embedding. Dynamic programming
regards the extremal as an envelope of tangents, and at-
tempts to determine the optimal direction at each point on
an extremal.

A. The Univariate Case

Consider the functional

Xl

J(g) = Sm F(x, g, g") dx. (12)

The problem involving minimization of J(g) with y =
g(x) is the so-called simplest problem in the calculus of
variations. As we saw in Section II, a necessary condition
for a function g, to be a solution to (12) is that it satisfy
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the Euler-Lagrange equation

= (13)
We can derive the fundamenta] equation for dynamic pro-
gramming for the variational problem stated above. We
state the problem in a space with independent variable ¢
for reasons that will become clear shortly

£l
J(g) = L F(¢, 8, 8")ds.

(14)

Now, let & alter with x < &,, thus “‘embedding’’ the
integral minimization problem in a family of related prob-
lems. In addition, let us introduce the optimal value func-
tion S(x, y) by S : '

£l
sy =mn| [ Feegna] o
The set {P} in (15) contains all admissible curves that
connect the point (x, g(x)) with the end point (£,
&(£1)). By definitjon, S(x, y) attains the minimal value
of the right-hand side (RHS) of (15) for all values of (x,
¥) in its domain of definition.

The reasoning is similar to the discrete case of dynamic
programming [4]. We pick an x < &, and then choose a
small increment A¢ such that + Af < £,. The candi-
dates for the minimizing curve are only those admissible

curves that are optimal on the interval [x + Ag, €], and-

where over the interval of interest [x, x + A£] are arbi-
trary. The aim is to find the optimal infinitesimal curve
over [x, x + A£]. The principle of optimality [4] assures
us that the best curve chosen as such will in fact be the
absolutely minimizing curve for our problem.

Let us assume that 8' is continuous in the interval
[x,x + A¢] and that Fis continuous in its arguments over
the same interval. We wil] then have the expression in
(16) as an alternate form to the integral over [x, x -+ Af]
and an optimized integral over [x + Ag, £] in (15):

F(x,y,y') At + 0(Af)
+S(x + ALy +y' AL + 0(Af)). (16)

In (16), a first order approximation is made to the integral
over [x,x + A£], and a Taylor expansion is done ong(x
+ Af) in the neighborhood of x. Clearly then,

S(x,y) < F(x,y,y") At + 0(Ag)
+8(x+ ALy +y AE + 0(a)). (17)

With equality achieved if the optimum y ' is chosen over
the interval [x, x + Af] and assuming an optimal curve
over [x + A¢, £,]; i.e.,

S(x, y) = min F(x, y, y') At + 0(A%)
V'

+S(x+ ALy +y' AE + O(Af)). (18)

In analogy with a discrete multistage decisjon process
where the optimal ‘sequence of decisions are desired, the

choice of y ’ corresponds to the choice of decisions at each
stage, and the term y+y"Af + 0(Af) corresponds tq
the new state that will be reached if y ' is chosen. Assum.
ing that S is differentiable in both its arguments, we can
further expand the third term on RHS of (18) as

S(x, ) + 5, As + S, y" AE + O(Af). (19)

Substituting (19) in (18), subtracting S(x, y) from both
sides, dividing by A, and letting A¢ approach zero yields,

0 = min [F(x, y, y') + Se + 8,y']. (20)
5

Equation (20) is a partial differential equation in S, and is
known as the fundamental equation for dynamic program-
ming [11]. This equation must be satisfied if the optima]
value function is to attain the absolutely minimal value of
the functional. The optimal policy function is the value
of the derivative of the optimal curve at each point con-
necting (x, y) with the terminal point. We denote this
function by y /(x, ), for the present continuous case. As
stated previously, dynamic programming seeks to deter-
mine an envelope of tangents.

We saw in Section II the kind of perturbation necessary
for deriving the Euler-Lagrange equation. The perturba-
tion function was an additive distortive function that per-
turbed the entire curve in an arbitrary manner. In dynamic
programming the variations are quite different from this
form. Over a small initial interval, the candidate curve is
perturbed arbitrarily as long as it remains admissible. The
remainder of the curve is defined to be optimal for the
remaining problem so that each perturbation in the initjal
interval produces a dependent deformation of the remain-
ing curve. Although the form of these deformations are
unknown until the problem is solved completely, the vari-
ations are well defined.

An observation to be made about the form of (20) is
that it is not a partial differential equation of classical
types. In fact as can be seen, although it is well-behaved

- in the sense that it is a linear equation in partial derivaties

of S, it involves a minimization operation. We can thus
derive a necessary condition for the minimization in (20)
by taking partial derivative of the expression in brackets
with respect to y /, rendering

Folx,y,y') + Sy, = 0. (21)

The following equation must also be valid:
F(x,3.5") + S, + S,y = 0. (22)
Solving for S, and Sx, and equating Sy and S, we can

combi}ne (21) and (22) into a quasi-linear partial differ-
ential equation in y', namely,

Fy'y’y.: + Ev’y'y 'y)" + (Fvy' + F);v'yl - F)) = 0. (23)

Finally, we should point out that the necessary condi-
tions discussed in Section II: the Legendre, Weierstrass,
and also the Euler-Lagrange conditions can all be derived
from the fundamental equation. This is not surprising be-
cause these conditions are all necessary, and not suffi-
cient.
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: B. Extending Dynamic Programming to Two
- Dimensions

A number of problems of early vision have been for-
mulated as minimization of integral functionals of the
form

T oTy
S S F(7) dy dx (24)

0 Jo
where 7 denotes a vector of arguments
[x ¥ 2 2 2y Zu """ ) and z = z(x, y). So far, in
this section we have seen the dynamic programming treat-
ment of the univariate variational problems, and in par-
ticular we have seen the form that the optimal value func-
tion takes. In this section, we will see that the theory
outlined for 1-D does not directly extend to the bivariate
case. In a forthcoming paper, in the context of reconstruc-
tion of surfaces, we will discuss the necessary machinery
for functional optimization of the bivariate problem with
dynamic programming {3].

Consider the functional J(z) defined over the domain

in Fig. 1. With a change in notation, the form of the in-
tegral becomes

J(z) =

J(z) = STX S:y F(7) dx dt. (25)

0

If we define the optimal value function S(x, y, z) as

S(x, y, z) = min Sn S:y F(7) dk d&, (26)

{r}
by additivity of integrals:
x+A
]
T,

+ S X STY F(7) d.lc dt

x+AE Jy

X

£ py+Ax
S F(7) dk d§

S(x, y, z) = min
{r} y

7:v" Ty . . .
+ S S F() dk dt
X y+Ak

Tx Ty
- S S F(7) dk d§.
x+AE Jy+ Ak

One would be tempted to follow as in (17) for the 1-D
case resulting in

S(x, y, z) < F(9) At Ak + O(AE Ax)
+ S(x + AL, y, z(x + AE, y))
+ 8(x, y + Ak, z(x, y + Ax))
— S(x + A%,y + Ax,
2(x + AL, y + Ax)). (28)

However, careful consideration of above equation con-
viaces one that this step is not valid. The problem arises
when the minimization operation is distributed over terms
in the sum in (27). Hence, a recurrence relation for com-
puting the optimal value function as defined in (26), as a

(27)

859

(0,0) x x+A% Te

y +Ax

T,

Fig. 1. The rectangular domain considered for finding the optimal solution
for the 2-D functional optimization problem with dynamic program-
ming.

direct extension of the one-dimensional case, cannot be
derived.

C. Finding Numerical Solutions

The solution of the fundamental equation is clearly de-
sirable because the fundamental equation guarantees ab-
solute minimality of the solution within the region of the
solution and, at one stroke, solves the problem for an en-
tire range of possible initial conditions. However, analyt-
ical solutions are rare. Numerical treatment of the fun-
damental equation is certainly one method for finding
solutions of functional optimization problems.

Alternatively, dynamic programming methods can di-
rectly treat the integral minimization problem. For the
one-dimensional problem, consider

S,(c) = min [F(x, c, v) - 8] (29)
v

where ¢ = g(0) and v = g '(0). The integral minimiza-

tion problem can thus be transformed to the problem of

constructing the optimal value function by means of the

recurrence relation: )

Sy(c) = min [F(x, ¢, v) = 8 + Sy_i(c + v8)]. (30)

" The suggested cbm’putational process determines the min-

imum not by means of derivatives, but rather by a
straightforward search technique. By evaluating the right
side of (30) for a large set of v values, and then by directly
comparing these, the absolute minimum is found.

Finally, one can perform optimization using discrete
dynamic programming. In Section V, we will describe an
application of this technique which exploits the discrete
nature of the problem. The problem is that of minimiza-
tion of the energy of active contours.

IV. THE VARIATIONAL APPROACH TO ENERGY
MINIMIZATION FOR ACTIVE CONTOURS

The energy-minimizing active contour algorithm pro-
posed in [23], and reformulated in [11, is a top-down
mechanism for locating features of interest in images. The
user or some other process places an active contour near
an image structure of interest. The constraint forces that
act on the active contour then push or pull the contour
towards features of the image structure. The contour locks
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on to features of an image structure by minimizing an in-
tegral measure which represents the active contour’s total
energy. _

The forces acting on an active contour depend on where
the contour is placed and how its shape changes locally
in space. The behavior of energy-minimizing contours is
controlled by internal and external forces. The internal
forces serve as a smoothness constraint and the external
forces guide the active contour towards image features
which minimize the contour’s total energy.

The total energy of an active contour with parametric
representation v (s) = (x(s), y(s)), can be written as

Efa = Sol E(v(s)) ds

= SO Eint(v(s)) + Eimage(v(s)) + Econ(v(s))bds

(31)
where _
En(v()) = («@)]u)|" + 86)] o)) (32)
Einage (0(5)) = Wiine Bine (2(5)) + Wagge Eugge(0(s))
+ Wem Eem (v(5)) (33)
Eon(v(5)) = —k(x, — x,)". (34)

The internal energy E;, represents the forces whict.
constrain the curve to be smooth, Eimage represents the
forces derived from the image which constrain the curve
to take the shape of features present in the image, and the
constraint energy E,,, represents the energy of a spring
connected between a point on the contour and some point
in the plane.

The internal energy results in v (s) being a controlled
continuity spline {32] with the first order membrane term

in (33) favoring discrete points to become closer to one

another and the second order thin-plate term favoring
points to become equidistant.

The image energy is a linear combination of three terms
all derived from the image: the line energy simply attracts
the contour to lower or higher intensity values in the im-
age depending on the sign of wy;,, with Eje = I(x, y),
the edge energy is calculated as Eyp = — | VI(x, y) |2
thus attracting the contour to image points with high gra-
dient values, and E\.m is the curvature of the level con-
tours in a Gaussian smoothed image, attracting the con-
tour towards line terminations.

The constraint energy attracts points on the contour to
points in the plane. In (34), x, and X, represent such points
on the contour and in the plane, respectively, and k is the
‘‘spring constant.”’

Letting E,,, = Eingge + Econ, (31) becomes

1
So E.(v(s)) + 3 (oz(s)

v(5)] " + B(s)|va(s)|") ds.

(35)

Representing the integrand by F(s, Vs, U), the Euler.
Lagrange necessary condition is derived as

] 8

F,——F, + —

Yooas T gt

Substituting the terms in the above equation, we obtain 4
pair of independent Euler-Lagrange equations,

Oex:

v = 0. (36)

—0Xg + Bxssss + ax =0 (37)
oE
—aYyg + Byssss + _ﬁ = 0. (38)

To solve numerically, the Euler equations with £,(i) =

‘0Ei/dx; and f,(i) = 3E,,/dy, are discretized, yielding

ai(v; = v_y) - ai1(vie) — 1)
+ Bic1(viey — 2012 + v)
= 26i(vi-y — 20 + v;4y)
t Bist(vi = 20401 + viy) + (£(), £,(1)) = 0.
(39)

Writing the equation in matrix forms, one for x and an-
other for y, yields

Ax + fi(x, ¥) =0 (40)

Ay + fi(x, y) = 0. (41)
We can now solve for position vectors iteratively,

o= (A4 (v = Lo yim1)) (42)
Ve = (A + 71)*1(7%—1 —fy(xz—b J’:—x))- (43)

A. Discussion

In Section H-B, several points were raised in regard to
optimality, numerical stability, convergence, and en-

- forcement of hard constraints within the variational

framework.

Let us look at these issues and some additional points,
starting with convergence of the iterative method of so-
lution. Arguing for the case of (42):

-1 -1
Xy = ’Y(A + 'YI) X, + (A + 'YI) C. (4‘4)

With C, = —f.(x,, y,)and B = (A + yI) "', the equation
can be reformulated to be:

t
X4l = (’YB)!+IXO + _;0 "/iBi+lC,_i. (45)

If the final solution is x4, x, = yBx, + BC.. Then we
have

Xevt — Xy = 'yB(x, - x*)' + B(C: - Ca)

(vB) " (%o — x4)

t
+2BNCL - C). (46)
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This is the error in successive approximations. For the
simple case of C,_; = C,,, forall i and ¢,

U (47)

X+1 — Xy = (yB) Xg = Xy).
Letting xo — X4 = oqu; + ouy; + ¢+ + + a,u,, where
{u;}i=1 are the eigenvectors of yB with {\;}{-; being
the eigenvalues, we have,

o Ny + oMoy + -+ N, = 0. (48)
If A\; > 1, for any i, the process does not converge since
the limit of (yB)' does not exist when ¢t — oo, and (48)
does not yield an equality. If C,_; # C,, it is difficult to
predict the convergence properties in general.

Optimality is not guaranteed within this formulation.
Existence and uniqueness of the solution could be guar-
anteed (see [33]) if the external force field were convex
or simply did not change with time. However, close at-
tention to the form of iterative solution unveils that the
external energy field changes with each iteration, and
moreover for images of real scenes can not satisfy the
convexity requirement. As we saw in Section II, although
the Euler-Lagrange equation is a necessary condition for
optimality in a local sense, it is not a sufficient condition.

In terms of possible constraints enforceable on the so-
lution, within the variational formulation described here,
constraints can be enforced on the solution if they can be
added to the overall functional. Differentiability of con-
straints in the variational formulation however is neces-
sary and strict enforcement of constraints is not accounted
for in the variational approach to energy minimization.
Although the weight associated with a desired constraint
term may be increased to force more effect from it, the
constraint will be satisfied at the cost of other constraints
such as smoothness not being satisfied as closely.

There is a need for estimates of high order derivatives
of the discrete data. The iterative solution requires esti-
mate of the derivative of the gradient of the image data
(arising from the edge energy functional). Unless the im-
age is smoothed, this term may cause instabilities.
Smoothing the image however results in poor localization
for boundaries. One may need to resort to scale space
strategies in such cases [23].

Finally, as characteristics of the formulation, if a con-
tour is not subjected to any external forces, it will vanish
to a line or a point, and furthermore, if it is not placed
close to image boundaries, it will not get attracted.

In summary, although the computational requirements
of the variational approach is linear, dynamic program-
ming has important features, making the new formulation
attractive.

V. TIME-DELAYED DISCRETE DYNAMIC PROGRAMMING
FOR- ENERGY MINIMIZATION OF ACTIVE CONTOURS

Consider the energy-minimization problem described in
the previous section. Discretizing the internal energy term

&

ing the sequence of functions of one variable, {s;
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in (32),
2
Eiw(v:) = (] v; = Vit (49)
+ Bilvi+l - 21},' + v,-_llz)/Z.
Discretizing the integral in (36),
n—1

Etttal = i§0 Eint(yl') + Eext(vi)‘ (50)

In order to use dynamic programming, the observation is
made that minimization of (50) can be viewed as a dis-
crete multistage decision process. Starting from the initial
point on the contour, we can treat the minimization prob-
lem as one that at each of a finite set of stages (ig, iy, * * * ,
in~1); a decision is chosen from a finite set of possible
decisions. One could solve for the optimal policy for the
continuous multistage decision process [e.g., (30)]. How-
ever, with this approach, the discrete process introduced
for numerical purposes has nothing to do with the original
discrete grid upon which the contour points are initially
placed. The algorithm described here takes advantage of
the inherent discrete nature of the problem.

A correspondence can be made between minimization
of the total energy measure (with only the first order term
in the internal energy measure) and the problem of mini-
mizing a function of the form

" )

= E(vy, 1) + Ex(vp, v3) + -+~

E(Ul, Uy, ™

+En—l(vn—], U,,) (51)
where each variable is allowed to only take on m possible
values. One way to find the minimum of the above func-
tion is by exhaustive enumeration. A more efficient
method is via discrete dynamic programming, with »; cor-
responding to the state variable in the ith decision stage.

The dynamic programming solution involves generat-
n—1
€ i=1
(the optimal value function), where for obtaining each s;
a minimization is performed over a single dimension. As
an example, for a function having the form of (51), with
n=235,

si(vy) = min E, (v, 1)
L4

5:(v3) = ﬂzin si(v2) + Ey(vy, v3)
2

s3(vs) = min 5;(v3) + E3(v3, v4)
vy

min E(vh Uy, Uz, Uy, US) = min S3(U4) + E4(l;4’ Us).
Yttt Us )

(52)

For the general case, s;(vyy;) = miny, {sc-1(2p) +

E. (v, v4+1)}. In view of the form of (51), let us first
consider only the first order term in Ej,,. With k repre-
senting the stage and v, being the state variable, the re-
currence relation for computing the optimal value func-
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3]

0°

o

tion for contours is given by - 2 01
R o 1 2

£ :
St(ve+1) = min {slc—l(vk) + Eee(vy) /
Uk .

0

e

+ lvk+l - vklz}‘ (53) Vi T ‘ =

Fig. 2 shows the basic idea in a simplified case where —
there are only three possible states per stage. The cost Ykt
associated with any given arc corresponds to the internal
energies between two possible choices in decision sets.

In addition to the energy matrix corresponding to the
optimal value function {s;}, a position matrix is also Sk(Via) = "‘11"1 Sk1 (Vi) + Ey(Vy V)

; needed. Each entry of the position matrix at stage k stores k

Ao the value of v, that minimizes (53). Fig. 3 illustrates the Fig. 2. One itera.tion of the algorithm for computation of'thc min_imaLen.
A d bet the decisi t and i e Dix- ergy contour with only the first order term in Eiq. In this example, each
i corréspondence between the emswp _Se a mag p'lX point on the contour is only allowed to move to two othér points (m =
els. In order to find the contour of minimum eéncrgy using 3). The darker arrows correspond to the minimum at each stage. Further
the backward method of solution for discrete dynamijc  description is given in the text.

o programming problems, E;, (¢) = min,, s,_,(v,) is

; found. This is the energy of the optimal contour. Tracing :
10 back in the position matrix, the optimal contour is found. s
' This procedure constitutes a single iteration. If there are RVNRE
§ n points and m directions at each point, each iteration has Y
complexity O(nm?). For finding the optimal contour, the

] E iterative process continues until E i (2) does not change
: with time. Convergence is guaranteed since the configu-
ration of points on the contour will not change unless the
total energy of the contour is reduced by the new config-
uration. v

An important feature of this algorithm is that one is able
to enforce hard constraints on the solution. Consider for

example the case of an inequality constraint where it is 4
desired that no two adjacent points on the contour become NA,
closer than a distance d. In such a situation, when com- 3
puting the energy matrix, the distance between points are

also computed. If computing s, ( v ields a point that ’
iol 11_)1 di P g kfg k+1) y 1 ? h Fig. 3. The decision set for the discrete dynamic programming formula-
Violates the distance constraint Or some value o U, then tion (with m = 9). The two curved arrows depict the minimum energy

that choice is eliminated and the best next minimum sat- configuration for the current iteration.
isfying the constraint is chosen. In this case the value of
.the new minimizer of v, is stored in the position matrix.
If no minimum exists which satisfies the constraint, the
algorithm halts. Another useful example of a hard con-

points on the contour and we can apply”the standard form
of dynamic programming in the usual way:

straint might be a binary edge image. Use of such con- S;(vi+1, v;) = min Si-1(vi, v;_)) + a(lvi - Vi, [)2
straints will be illustrated in Section VI. vi=1
Let us now consi‘der tne case when E,, inclpdes the sec- + :Blvi+1 - 2u; + vi_llz + E.(v;).
ond order term. With the second order term in place, (56)
Eoa (21, 02, ' tn) Notice that the new dynamic programming table has m’
= E (v}, vy, v3) + Ey(vy, vs, v3) + - - - entries for each stage. Each entry in the dynamic pro-
gramming table in the i + | row represents fixed values
- + Ei2(vy_y, v,y Un) (54) forv;, ; and v; and the minimization is done over possible
where - values of v;_,. Results are stored in the table entry at
i + 1. Fig. 4 shows what the time-delayed discrete dy-
E_(vi-1, v, v, 1) namic programming algorithm involves for a hypothetical

= Eo(vi) + Ep(vi_y, v, v, ). 55) case withm = 3,
ol ') (v v i) (53) The time complexity for the algorithm increases to

In order to apply dynamic programming to (55), a two  O( nm®), where n is the length of the contour and m is the
element vector of state variables, (v;, ,, v;), is fixed. Now number of possible choices at each stage. The storage re-
the optimal value function is a function of two adjacent quirement also increases from n X m ton X m? memory




=7

gr

AMINI et al.: VARIATIONAL PROBLEMS IN VISION

N 27‘\
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Fig. 4. Computing the minimal-energy contour in a single iteration with
both terms of the internal energy measure. Each point on the contour is
only allowed to move to two other points in this example (m = 3). Each
entry in the dynamic programming table in the i + 1 row represents fixed
values for v; ., and v; and the minimization is done over possible values
of v;_. Results are stored in the table entry at i + 1.

elements when considering the second order term. In
summary, the algorithm iteratively executes the steps in
Fig. 5.

Examining the dynamic programming table, in order to
make the algorithm independent of the number of choices
at each stage and only linearly dependent on the number
of points on the contour, consider the following strategy.
We can compute the energy of each entry for a given row
in the dynamic programming table in parallel. This is be-
cause there are no interactions among the entries in each
row in Fig. 4. For full parallelism, the number of proces-
sors needed is m?. This reduces the computational com-
plexity to O(n).

A. Discussion

In this section we list properties of the time-delayed
discrete dynamic programming based approach.

¢ Relational constraints can be enforced in the dynamic
programming formalism in a natural manner. The dy-
namic programming formalism provides the machinery for
enforcing hard constraints on the distance of points on the
contour. o ,

e In the dynamic programming formulation lower or-
der derivatives of data are used and the problem represen-
tation that is adopted only deals with the gradient of the
image data, and first and second derivatives of the active
contour data. There are clear advantages for using lower
order derivatives of data whenever possible.

* The dynamic programming method used for optimi-
zation of active contours takes advantage of the discrete
nature of the problem. Dynamic programming can di-
rectly treat the continuous version of the problem, how-
ever, the nature of the problem lends itself to the discrete
dynamic programming approach for optimization.

e Each iteration results in an optimum contour within
the resolution of the considered window. This is the case
since in the dynamic programming approach, all possible
choices are considered within an efficient parallelizable
framework.

¢ In the discrete dynamic programming formulation,
the active contour is guaranteed to converge to a final so-
lution in a finite number of iterations since the energy
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1. Find total energy of the minimal energy contour for the set
of pixels considered around each point.

2. If total energy has not changed from previous iteration, exit.
3. Move points to newly computed locations.
4. Go to 1.

Fig. 5. Steps in the iterative algorithm.

measure is monotonically decreasing with time. The al-
gorithm halts when there is no change in the total energy
of the contour.

.

VI. EXPERIMENTAL RESULTS

We have tested the time-delayed discrete dynamic pro-
gramming algorithm on a number of real images. The user
interactively specifies the position of the active contour
and sets the weights for the internal and external active -
contour forces. In the current implementation, all coeffi-
cients are set independent of position. In addition, the user
can specify any hard constraints that are to be imposed on
the contour.

These experiments illustrate two types of hard con-
straints. In all the experiments to follow the distance be-
tween adjacent points on the contour are not allowed to
become smaller (or larger) than some user specified num-
ber. In one experiment that will be discussed, a hard con-
straint was provided to the algorithm in the form of a bi-
nary-edge image.

Although the algorithm is not completely independent
of parameter settings, we believe that it is insensitive to
a large range of parameter settings for a number of param-
eters. In its current form, selection of parameter values is
based on empirical observations. This seems to be the
most widely used strategy (see for example [24]). Certain
approaches to automatic selection of parameter values ex-
ist however. Gennert and Yuille [17] recently proposed
the idea of determining the optimal weights in multiple
objective function optimization using the min-max prin-
ciple. Another approach proposed by Wahba [35], [36]
and discussed in [7] and [30] is the method of cross val-
idation which can be used to determine the optimal degree
of smoothing.

Fig. 6 shows iterations of (42) and (43) over an image
of a Pepsi can for a representative set of parameters with
30 points on the contour. Fig. 7 shows iterations of Fig.
5 over the same image and with the same number of points
with the constraint that the distance between adjacent
points be greater than d = 8. In all figures to follow it-
erations proceed from left to right and top to bottom. Each
displayed contour represents every tenth iteration and
points on the contour are represented by tick marks.

The second set of experiments involves running the al-
gorithm over an image of leaves. Figs. 8 and 9 show the
results.

The third experiment is done on an image of a computer
mouse. Results are shown in Figs. 10 and 11.

The fourth experiment is on a cell image. Fig. 12 shows
the cell image, and its corresponding Canny edges [9].
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Fig. 6. Iterations of (42) and (43) over an image of a Pepsi can. The first Fig. 9. lterations of Fig. 5 over the ima
image on the left is the initial active contour. The figure illustrates in-
stabilities that may result.

ge. The first image on the left i
the initial active contour. An inequality constraint on the interdistance
of points is enforced.

[o4 . . . . .
Fig. 7.‘ 'It_eratlor'ls of Fig. 5 over.the image. The ﬁ.rst lmage on the. left is Fig. 10. Extracting the outline of a computer mouse with active contours
the initial active contour._An inequality constraint on the interdistance . s L by
L using the variational approach to energy minimization. - §
of points is enforced. o . i .

Results of the application of the algorithm are shown in 3
Fig. 13. As can be seen, in the four representative itera-
tions, the contour expands rather than contract. In this
experiment, use is also made of the binary edge image.
The contour follows the boundary quite closely, and fills
in the gaps where there is a null response from the edge
detector. (These contours are referred to as the inflating/
deflating contours [2].)

A final illustration (Table I) is given as a repeatable
exercise which the reader can use to verify his or her own
implementation of the algorithm given in this paper. This
illustration is, if you will, a ‘‘repeatable experiment.”’
This experiment involves the application of the time-de-
layed discrete dynamic programming algorithm on a
256 X 256 synthetic image. The synthetic image was gen-
: : i erated by creating a 128 X 128 square of intensity 255 on
Fig. 8. Iterations of (42) and (43) over an image of leaves. The first image @ background of zero imenSity in the center of the image. ,

on the left is the initial active contour. A normalized 7 X 7 box filter with unity entries was then 3
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Fig. 11. Iterations of Fig. 5 over the image of a computer mouse with 30
points on the contour. Each picture represents every tenth iteration.

g

&

V)

Fig. 12. A noisy image of cells, and its Canny edge-detected image.

Fig. 13. The first image on the left is the initial contour, a circular con-
tour. These contours are referred to as the inflating contours [2]. There
are 15 points on the contour, and the edge image is used as a hard con-
straint in the optimization process.

ceavolved with the resulting image. The initial contour
positions were: _(206, 54), (217, 74), (206, 95), (220,
112), (206, 133), (222, 150), (208, 173), (221, 194),

(199, 204), (180, 222), (166, 206), (137, 218), (118,
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TABLE I
PARAMETER VALUES FOR ‘‘REPEATABLE EXPERIMENT"’; SEE TEXT

o .B Wiine | Wedge | Wierm

1.0}05] 0.0 | 5.0 0.0

Fig. 14. A repeatable experiment with a synthetic box with ramp edges.

There are 30 points on the contour, and the distance between consecutive
points is restricted to remain greater than 8.

80000

. 70000
60000 e,
50000 e,
40000
30000
20000

: '.’“M“nn“n“

10000
0

1 5 9 131721252933 37414549
Fig. 15. A plot of energy (50) as a function of iterations.

204), (96, 224), (84, 206), (60, 216), (50, 202), (48,
184), (34, 168), (47, 146), (32, 126), (46, 110), (32,
86), (46, 77), (42, 56), (57, 50), (73, 40), (94, 46),
(108, 36), (126, 42). - -

Fig. 14 shows a sample of iterations of the algorithm
over the image. Iterations proceed from left to right and
top to bottom. Notice that in each iteration points on the
contour are characterized by tick marks. In this experi-
ment an inequality constraint was enforced on the mini-
mum allowable distance between any two adjacent points
on the contour. The distance between no two points was
allowed to become less than 8 pixels. Fig. 15 shows a plot
of energy as a function of iterations.

VII. CONCLUSIONS

Variational methods have been applied to a number of
optimization problems by researchers in computer vision.
As discussed in the paper, certain issues are of concern
when using variational methods. Dynamic programming
is an attractive methodology for optimization since it by-
passes local minima and allows for enforcement of hard
constraints on the solution within a natural and straight-
forward structure. For the active contours, we have de-
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vised the time-delayed discrete dynamic programming al-
gorithm for energy minimization. In the dynamic
programming framework, hard constraints can be en-
forced on such quantities as the minimum allowable dis-
tance between adjacent points on the contour and position
of the contour points. Constraints of this form result in
more controlled behavior of the contours. Convergence of
the algorithm is guaranteed, and so is the optimality of
the solution.
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machine vision is designed in a restricted domain, then the modules of that
system are analyzed to characterize their general effectiveness and to un-
derstand when they can be applied. With this understanding, the collection
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of modules can be combined into a toolbox for the design of new systems.
The blackboard architecture provides a natural framework for the switching
and recombining of experimental modules. This approach is being applied

_- in medical image processing. In addition to the work based on blackboard
“architectures, he is also involved in research in sensor-based robot navi-

gation. Navigation, even in known environments, requires sensory feed-
back. This feedback, however, must be tied to the prior knowledge of the
scene wether derived from other views of the same sensor, from different
sensors, or from world knowledge. He is working on two projects related
to the assimilation of sensory information into an evolving description of
the environment: dynamic stereo vision for capturing depth information,
and knowledge-based landmark identification for reducing location uncer-
tainty. Subsystems with these abilities, eventually, will become part of a
robot navigation system.
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of solder joints for IBM, laser range image processing for CAD-based vi-
sion systems, robotic navigation and rotorcraft navigation using machine
vision, and applications of expert systems in inspection systems. He is a
consultant to many companies in the areas of computer vision, artificial
intelligence, and computer graphics.
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