-

N
B S TV e

1. b W
PR N A B e
A e ﬂ’%‘w:w@" 3 - .

- . . L L

w

| % COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 34, 344-371 (1986)
i . Distance Transformations in Digital Images !
] + | ;
= GUNILLA BORGEFORS ;
ii National Defence Research Institute, Box 11635, S-3581 11 Linkoping, Sweden
;! - . Received September 10, 1985; revised February 6, 1986 %
A distance transformation converts a binary digital image, consisting of featurc und %
o o . non-feature pixels, into an image where all non-feature pixels have a value corresponding to j
L the distance to the nearest feature pixel. Computing these distances is in principle a global |
i operation. However, global operations are prohibitively costly. Therefore algorithms that i
13 consider only small neighborhoods, but still give a reasonable approximation of the Euclidean |
2 distance, are necessary. In the first part of this paper optimal distance transformations are J_
" “ developed. Local neighborhoods of sizes up to 7 X 7 pixels are used. First real-valued distance 1
’ | transformations are comsidered, and then the best integer approximations of them are
| computed. A new distance transformation is_presented, that is easily computed and has a g
o t ~ maximal error of about 2%. In the second part of the paper six different distance transforma- i
tions, both old and new, are used for a few different applications. These applications show ’
ot both that the choice of distance transformation is important, and that any of the six :
: “" | transformations may be the right choice. © 1986 Academic Press. Inc. i
l 1. INTRODUCTION l
5 ;"* Consider a digital binary image, consisting of feature and non-feature pixels. The ?
et features can be points, edges, or objects. A distance transformation is an operation
I;l ~ that converts this binary image to a grey-level image where all pixels have a value *
) ) cqrresponding to the distance to the nearest feature pixel. An example i1s shownm in
; Fig. 1. The binary image depicts the letter F. After the distance transformatiom all ‘
gl pixels are have a value corresponding to the distance to the F. The image cam be
‘ seen as a series of distance contours, each contour being all pixels equidistant from |
it the feature. . §
e Computing the distance from a pixel to a set of feature pixels is essentially a |
i; global operation. Unless the digital image i1s very small, all global operations are
o prohibitively costly. Therefore algorithms that consider only a small neighborheood |
at a time, but still give a reasonable approximation to the Euclidean distance are
o necessary. Distance transformation algorithms that use small neighborhoods wilk be
33 denoted DTs henceforth. A number of different DTs, more or less complex, and j
5 § more or less accurate, have been developed, and will be discussed in this paper. |
i | The paper consists of two parts. In the first part, Section 3, optimal DTs are |
S - computed, optimal in the sense that the maximum difference from the Euclidean |
. H' distance that can occur is minimized. Local neighborhoods of sizes up to 7 X7 ;
E pixels are investigated. Parts of the results for 3 X 3 neighborhoods have been 3
Fi published before [1], but in less mathematical detail. An excellent new DT is ;
uE. presented, that is easily computed, and that has a maximal difference from the
ke Euclidean distance of about 2%. %
o In the second part, Section 4, six different DTs are used in some applications. i
- Two of the DTs are the best integer ones developed in Section 3. The other four '
ones are previously published DTs, which will be briefly described, with referemces, |
r i J in Section 4. The applications show both that DTs in general are useful in a number
0734-189X /86 $3.00 ;
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Fig. 1. Example of a distance transformation. To the left is a binary image, with feature (*) and
non-feature (—) pixels. To the right is the resulting image: Each pixel has a value corresponding to the
distance to the nearest feature pixel. The Euclidean distance has been rounded to the nearest integer.

- of contexts, and that the choice of DT is important. One application is new: the

computation of pseudo-Dirichlet tessellations in digital images, Section 4.4, where
the fact that the images are digital rather than continuous is taken into account.

2. BASIC IDEA AND ALGORITHMS

Digital distance transforms, DTs, that use only a small image neighborhood at a
time are based on the following idea: Global distances in the image are approxi-
mated by propagating local distances, i.e., distances between neighboring pixels.
This propagation can be done either in parallel or sequentially. Sequential DTs was
first published in 1966 [2], and parallel ones in 1968 [3]. These papers present the
basic 1dea, and some DTs.

An orniginal binary image, to which the DT is to be apphed, consists of feature
pixels with the initial value zero, and non-feature pixels with the initial value
infinity, i.e., a suitably large number. All DTs will here be described in graphical
form as “masks,” see Fig. 2. Note that the DT masks are not linear filters! The
constants ¢, are the local distances that are propagated over the image. The size of
the neighborhood can vary. In Fig. 2, 2 5 X 5 neighborhood is illustrated.

The computation of the DT is either parallel or sequential. In the parallel case the
center of the mask at the top of Fig. 2 is placed over each pixel in the image. The
local distance in each mask-pixel ¢, is added to the value of the image pixel
“below” 1t (including the central zero). The new value of the image pixel is the

- minimum of all the sums. The process is repeated until no pixel value changes, i.e.,
- the number of iterations is proportional to the largest distance in the image. The

- parallel algorithm is thus:

oy = P;f%iénrl?asrr;(vﬁ;fj+l + c(k, 1)) (1)

where v, is the value of the pixel in position (i, j) in the image at iteration m,
(k. ) is the position in the mask (the center being (0,0)), and c(k, 1) is the local
distance from the mask. A small example of the parallel algorithm is shown at the
top of Fig. 3.
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F1G. 2. Masks describing the distance transformations. The upper mask is used in parallel computa-
tions. In sequential computations that mask is spht at the thick line, resuiting in the two lower masks,

PARALLEL COMPUTATION

______________ 3333333

_______ ~-22222 - 32222273

-=-111 - - -2 1112 - 3211123

“--101- - -21012 - 3210123
ORIGINAL - =111 = - ~21112 - 3211123

_______ -2 222 2 - 322222373
_____________________ 3333333
------- 1st iter. 2nd iter. 3rd iter.
- - - ® _ _
_______ SEQUENTIAL COMPUTATION
—————————————— 3333333

------- 3222223

_______ 3211123

- -==0123 3210123

- -1T112373 2211123

-22222173 32222273

3333333 333333373

forwards backwards

Fi1G. 3. Computation of a DT. At the left is the original image with one feature point in the mif:ldlt-
The upper images illustrate the parallel algorithm. The lower images illustrate the sequcntial algorithm.
showing the result of the forward and backward passes. (The DT is the chessboard one, sce Sect. 4.1).
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ons. The upper mask is used in parallel computa-
. the thick line, resulting in the two lower masks.
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------- 33333373
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21012 - 32101273
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y 2 22 2 2 3

1 333333

ackwards

ginal image with one feature point in the middle.
: lower images illustrate the sequential algorithm,
s. (The DT 1s the chessboard one, see Sect. 4.1).
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The sequential algorithmkalso starts from the zero/infinity image. The symmetxi-

cal parallel mask is split into two masks, shown at the bottom of Fig. 2. The masks

are passed over the image once each: the forward one from left to right, and from
top to bottom, and the backward one from right to left and from bottom to top. The
new value. of the “central” image pixel is the minimum of the sums of the image
pixel values and the local distances ¢, as before. After these two passes the distance
transform 1s computed. The sequential algorithm 1s thus:

Forwai‘d: |
for i = (size + 1)/2,...,lines do
for j = (size + 1)/2,...,columns do

v, ;= _ngﬁgm (0i4k. o1+ (K, 1)) (2)
forward mask

Backward:
~for i = lines — (size — 1)/2,...,1 do
for j = columns — (size — 1)/2,...,1 do

v, ; = mimmum (v,-+k,j+,+ c(k,l))
(k. D)E
backward mask

where “size” is the side-length of the mask and the rest of the notation is the same
as in (1). A small example of the sequential algorithm is found at the bottom of
Fig. 3.

From now on each DT will be described only by its parallel mask (with a thick
line indicating where 1t should be split in the sequential case). The final DT result 1s
exactly the same whether the parallel (1) or sequential (2) computatiom method 1is

used.

3. OPTIMAL DISTANCE TRANSFORMATIONS FOR DIFFERENT
NEIGHBORHOOD SIZES

- In this section optimal local distances in the DT will be derived. Optimality is
here equivalent to minimizing the maximum difference between the DT and the
Euclidean distance that can possibly occur. Other definitions of optimalaty could of
course be used, e.g., minimizing the average difference. Then the values of the
optimal local distances would be (slightly) different.

The Euclidean distance transformation, that gives the correct real valued Euclidean
distance between pixel centers, is abbreviated EDT henceforth. Algoaithms. that
compute EDT have been published, but they are rather computationally complex,
see Section 4.1. (If EDT could be easily computed there would be mo need for
approximations.)

In early papers about distance transforms, [2, 3], almost no attempt was made
to optimize the local distances used in the DT. This optamization was accomplished
for a 3 X 3 neighborhood in [4 and 1]. To make the presentation i this paper
complete the relevant results from [1] are repeated here, but extended and in greater
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F1G. 4. The 3 x 3 neighborhood mask. The local distances « and b are to be optimized.

mathematical detail. The mathematics of the optimization is straightforward. The
greatest difficulty is to keep track of all the different equations.

Naturally the approximation to the EDT becomes better the larger the size of the
neighborhood that is used in the algorithm is. The neighborhood sizes 3 x 3, 5 x s
and 7 X 7 are analyzed.

In many digital image processing applications real-valued pixels are undesirable.
This 1s especially the case when wusing dedicated hardware, and when simplicity and
speed are essentaal. Therefore, the true goal of optimization of the local distarices is

to find as good integer approximations as possible. Such Integer approximations are
discussed in Section 3.4.

3.1. 3 X3 Neighborhood

The general 3 X 3 neighborhood mask is found in Fig. 4. The two local distances
a and b are to be determined, where g is the distance between horizontal /vertical
neighbors, and b is the distance between diagonal neighbors. Values that have been
suggested for @ and b are: a=1, b = infinity, and a=1, b=1 in [2]; « =1,

-b=\/§in[5];a=‘2,b=3in[6];anda=3,b=4in[l].

Consider two pixels with the horizontal distance x units, and the vertical distance

y units. Assume y < x. This is not a restriction as the mask is symmetric. In Fig. 5

the geometry is illustrated. The two pixels under consideration are marked with
black dots. Montanari has proved, [5, Theorem 1], that there always exists a
minimal path between the pixels that consists of (at most) two straightline segments.
A mnimal path is the shortest path between the pixels, when thqﬁdistance 1S

Lo al distances

b

T[—"a

Cy=M, Line3

L +—t-»
T Area 2
y=0, Lime 1
__E.TY '—-TE

y o M-y “x=M

—= p an ] — —

4

F1G. 5. The geometry of the DT in the 3 X 3 neighborhood case. The two local distances in the small
upper diagram are used. The distance between the lower left-hand pixel and all pixels with x = M are
computed. The solid Bine is an example of a minimal path.
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-measured in the small steps allowed by the mask. Montanari’s theorem is true for all

neighborhood sizes, as long as the local distance values are constrained in some very
natural ways (discussed below). |
The minimal path between the points in Fig. 5 is the solid line. The length of the

- dlagonal piece 1s y*b, and the length of the horizontal piece 1s (x — y)*a (remember

x > y). These expressions are valid for the minimal path between the pixel in the
lower left-hand corner and any other pixel in the area illustrated in Fig. 5. Consider
the DT along the vertical line x = M (i.e., not only at the pixel centers). The DT
value is a function of y, T, (y), where

T)(3) = y*b + (M — y)sa = y(b~ a) + Ma. (3)
Function (3) is valid only i.f a and b are constrained as
b<2a and b>a. (4)

The first inequality ensures that one diagonal step is “shorter” than one horizontal
+ one vertical step, and the second inequality ensures that two diagonal steps (e.g.,
up right + down right) is “longer” than two horizontal steps. These constraints are
the ones necessary for the validity of Montanari’s theorem.

The difference Diff( y) between DT and EDT along the line x = M 1s, using (3),

Diff(y) = y(b — a) + Ma — {M*+y*, 0<ys<M (5)

The absolute maximum of (5) is the measure of optimality of the DT. The aim 1s

"now to determine a and b so that this maximum is minimized. The maximum

occurs either when the derivative of Diff( y) is zero, or at the ends of the interval,
y=0or y =M.

The maximum for many functions of the same type as (5), but with other
constants, will be needed in the subsequent sections. Therefore a general formula 1s

%erived. For a function

F(y) =y*S + M*T — {M?* + )’ (6)
the derivative becomes
Y
F'(y)=S . (7)
() iy

The extremal value occurs for F’(y) = 0, 1.e., for
M*S
V1 - 52

if |S| <1, which is true if the constraints (4) hold. Inserting (8) into (6) and
simplifying the resulting expression gives the value of the maximum:

F_(y)=(T-V1-58*)*M. (9)

This formula will be used frequently.

: (8)

y:
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Using (9), the maximufn of the diﬁ"erence (5) within the interval 0 < y < M, ie
in Area 2 of Fig. 5, becomes - | ’

Diffz_z .(a—- \/1 — (b ;—'a)z)*M. . (10)

The ;nds of the interval are the points where x = M crosses the lines Y =0 and
y = x, drawn as dashed lines in Fig. 5. For y = 0, i.e., on Line 1, the difference (5)
becomes | - | |

Diff, = (a — 1)* M, (11)
and for y = M, i.e., on Line 3, (5) becomes
*  Diff; = (b~ V2)* M. (12)

First fix the local distance between horizontal /vertical pixels to one, a = 1. This

- 18 a natural assumption, as a can be interpreted as a scaling factor.. Then from (11):
Diff; = 0; and from (4): 1 < b < 2. The optimal b is the value that minimizes the

absolute values of Diff,, (10), and Diff,, (12), i.e., minimizes

max(1 — V2b — 2,6 — V2|), 1<b<2, (13)

where the constant factor M is disregarded. Expression (13) s illustrated in Fig. 6.
Diff, and the absolute value of Diff, are drawn as functions of b. The optimal & is
clearly the value for which the two curves cross, at b =~ 1.35.

The exact value of b can be found by solving Diff, = — Daff 3, LE.,

1-V2b-b2=2 - b. (14)
The solution of (14) is
1
bop = 7= + W2 — 1 = 1.35070. (15)
maximal
t difference
10M4 1-¥2b - b?
lb—Z|
0.5M
10 bopt 15 T

F1G. 6. The maximal difference between the DT and the EDT as a function of the local distance b
(13). The two curves are the difference for y = M (12), and for the maximad difference in 0 <y < M
(10).
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: (5) within the interval 0 <y < M. je

(b~ a)*)x M. (10
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y =0, 1e, on Line 1, the difference (5)

-il)**nlv | (11)

V2)+ M. (12)
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Expression (13) is illustrated in Fig. 6.
iwn as functions of b. The optimal b is
‘0SS, at b = 1.35.

nng Diff , = — Diff ., i.e.,

=2 - b. (14)
1 = 1.35070. (15)
1-N2b-b
|b-Z|
r— b
2.0

d the EDT as a function of the local distance b
, and for the maximal difference in 0 < y < M
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Note that b,, 1s smaller than the corresponding ‘Euclidean distance between
diagonal neighbors: V2 = 1.41. o R | |

The maximum difference possible, denoted maxdifi, is found -by inserting (15)
into (12) (or (10)): A

maxdiff = (1/V2 — 2 = 1) M = 0.06351*M. (16)

The difference from EDT has now been minimized along x = M. As M is arbitramy

- the difference have been minimized everywhere. In reality maxdift 1s not propor-

tional to the size of the image, but rather to the longest distance between feature amd
non-feature pixels that occurs in the image. As y actually only takes integer valwes
(the pixel centers) maxdifi may never occur. It is thus an upper limit rather thare a
maximuirn. |

In the previous optimization a = 1. Now let a be any real value (allowed by (4)).

~ Then the optimal a and b can be found by minimizing the absolute value of the

two-parametric -functions Diff;, Diff,, and Diff 1 1.6, (10), (11), and (12). Somne
study reveals that this minimum occurs when —Diff; = Diff, = —Diff,. Solvimg
these equations the results become

= (V2V2 = 2 + 1)/2 = 0.95509

% op

and

by =2 + (V12/2 —2 —1)/2 = 1.36930. (17)

The maximum difference from EDT is found by inserting a,, and b, 1n (10) {or
(11) or (12)); maxdiff becomes

maxdiff = (Y2v2 — 2 — 1)* M/2 = 0.04491*M. (18)

As before maxdiff is proportional to the size of the image (or rather the longest

distance), but with a smaller factor, 0.045 instead of 0.064.
~ In the computations of a, and b, only the maximum difference from the EIDT
have been considered. But having minimized maxdiff it is interesting to see how the

“error” varies along the line x = M, 0 <y <M (Fig. 5 again). In Fig. 7 the

~ difference from the EDT (5), is plotted as a function of y, with the optimal local

distances inserted.

When both a and b are free variables, (17), the difference function 1s the solid
curve marked OPT in Fig. 7. The maximum absolute difference occurs at both emds
of the interval, and also at a point within the interval (the function is mot
symmetric). Expressed in another way: the maximum difference from the EDT
occurs along the lines angled 0° + n*45°,24.5° + n*90°, and 65.5° + n*90° from
the horizontal, where n 1s any integer.

When < = 1 and only b is optimized, (15), the difference function is the solhd

curve marked OPT, in Fig. 7. The difference is 0 for y = 0, grows to its maximaal
value, and then decreases to the same value with negative sign at the end of the
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0.05 -

0.00

-0.05 -

- F16. 7. The difference between some DTs and EDT-along the line y = M in the 3 x 3 neighborhood

case. See the text.

interval. The maximum difference occurs along the lines angled 20.5° + n*9Q°
45° + n*90°, and 69.5° + n*90° from the horizontal.

The dashed curve marked I3 in Fig. 7 is the difference function for the

- recommended integer approximation in the 3 X 3 neighborhood case, @ = 3 and
- b =4, (see Sect. 3.4). The maximum difference here occurs for y =M, 1e., 45° +

n*90°,
3.2. 5 X5 Neighborhood

When the local neighborhood is extended to a 5 X 5 pixels the general DT mask
becomes the one in Fig. 8. Some of the mask-pixels are not used (marked —), as
that would be pointless: Consider the mask-pixel in the middle of the leftmost
column, and call its value x. If x > 2a, then x will never be “used” in the
algorithm, as using two steps of length a will be shorter or equally long. if x < 24
then the value a will never be used (except for the very first step from the feature
pixels), and in practice the effect is a new a value, g = x/2. As each adding and
comparison in the DT algorithms (1) or (2) take time, the number of mask-pixels
should be as small as possible, and thus these unnecessary mask-pixels are excluded.

EDEaD
I N EY N
I o
o Y Y
ESEaE

F1G6. 8. The 5 X 5 neighborhood mask. The local distances a, b, and ¢ are to be optimized. The

empty mask-pixels are not needed in the computations (see the text).
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T along the line y = M in the 3 X 3 néighbofhood

along the lines angled 20.5° + n*90°
horizontal. .

7 1s the difference function for the
¢ 3 X 3 neighborhood case, ¢ = 3 and
:nce here occurs for y = M, ie., 45° +

['to a 5 X 5 pixels the general DT mask
1sk-pixels are not used (marked —), as
sk-pixel in the middle of the leftmost
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1l be shorter or equally long. If x < 24
for the very first step from the feature
2 value, a = x/2. As each adding and
) take time, the number of mask-pixels
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listances a, b, and ¢ are to be optimized. The
(see the text). |
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Local distances

y L
* 5|
é:"a ; 7] y=M, Linek
' /|
11
7T T 1l Area3
f-'"
TTF] y=Mi2, Line?
jor = Areal
1 *» X
X =M

F16. 9. The geometry of the DT in the 5 X 5 neighborhood case. The three local‘ distantoes in_tl;j
* ai] u ' er diagram are used. The distance between the lower left-hand pm?l _and all pixels with x =
31:2: con?lfuted. The solid lines are examples of the two occurring, types of mimmal paths.

As in the 3 X 3 neighborhood case the maximqm ‘diﬂ"erence between -th-fi]D}; ;1;?1
the EDT along the line x = M,0 <y < M 1s m_mlmlzed. The .ge_,om;atry LS illust aec
in Fig. 9. Montanari’s theorem still holds (ensuring that the mimima }?atd (::onslastural
two straight lines), if the values of the local d}stances are cops_tra;ls thbI;tween
ways (cf. (4)). As there are three localIdistanlfesl.1nvolved}‘;h:arr11m;1;mof 1320 between

-hand pixel and a pixel on the line x =
:;lgels??[‘i—elfyfr;:saare Ii)llm;trated as solid hines in Fig._ 9. The ch;nge between the two
types occurs for y = M /2, marked with a dashed line in the figure. -

For y < M /2 the path consists of the steps ¢ a_nd a, and .for y >1- l/ thepline
consists of the steps b and c. The value of the DT in the two intervals along

s, for0 <y < M/2:
Tl(y)—-=y*c-+(M—2y)*a=y(c—-2t1)+Ma, (19)
and for M/2 <y < M:
I,(y) = 2y — M)sb + (M — y)sc=y(2b—c) + M(c = b).  (20)

The maximum differemce occurs cither inside one of the two 1ntervlalds,: v:herelsthe

derivatives of 7, — EDT and T3 — EDT are zero, or at the ends of t e interva .the
Let a = 1. Then the difference becomes zero for_ y = 0. The rrllammurln 11; he

interval 0 < y < M/2 (Area 1 in Fig. 9) 1s found using the general formula (9)

T, — EDT (19):

Diff, = (1 - 1 - (-2 M. (21)

For y = M /2 (Line 2) the DT wvalue is ¢/2*M (use (20)), EDT s V5 /2*M, and the
difference becomes

Diff, = (¢ — V5)*M/2. (22)
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In the interval M /2 < y < M (Area 3) the maximum is again found using (9) on
Ty — EDT, (20): | |

_- D_.iff3 == (c — b — ')/1 -— (25 —-_c)z)* M. (23)

| Finally for y = M (Line 4) the DT value is b*M (use (20)), EDT is V2 *M, and the

difference becomes N o
Diff, = (b — vV2)x M. (24)

The optimal local distances 4 and ¢ are the values that minimize the largest of the
absolute values of the four difference expressions (21)—-(24). When these exXpressions
are studied 1t soon becomes apparent that only the value of ¢ is critical, i.c.. 45 long
as b 1s within a certain (small) interval only ¢ changes the maximal diference

because Diff, and Diff » (which are dependent only on c¢) are larger than DT, and

Diff ;. Thus the approximation to EDT is worst in Area 1 (as can be expected when
a 1s fixed). The optimal c is found by solving Diff, = Diff,:

Cop = (6 + V5 +132/5 — 64) /5 ~ 2.19691 (25)

Inserting the Copt - 1MtO (22) (or (21)), the maximum difference between the EDT

- and the DT becomes

maxdiff = (VS — ¢, )+ M/2 = 0.01958*. (26)

With ¢ = Cope the small interval within which b can vary can be computed. The ends
of the interval are computed by finding the Diff , n = 3 or 4, that becomes larger
than maxdiff at each end, and then solving the corresponding equation Diff =
maxdiff (= — Diff,). The minimal 4 is found by solving — Diff, = — Diff ,:

buin = (22 = V5 + ¢,,) /2 = 1.39463, (27)
and the maximal b is found by solving Diff; = — Diff,
| Dipax = (7C0pt -5 + 4\/\5‘3@ — ¢l )/10 = 1.43155. (28)
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The DT values will be different for different b, but as long as b is within the interval
(27) to (28), maxdiff is unchanged. One attractive choice is p = V2 = 1.41, which is
within the allowed interval. The local distance is then equal to the corresponding
Euclidean distance, and the difference from EDT becomes zero for y = M.
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The local distances have not been optimized for a # 1. Undoubtedly maxdifl |
would be smaller, but the computations are complex and the most important aim of
these real-valued optimizations is to, eventually, find good integer DTs. For integer |

DTs a becomes a scale factor, and the distance between horizontal /vertical neigh-
bors is thus (in some sense) always one. The optimal local distances are used as
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Fig. 10. The difference between some DTs and EDT along the line y = M in the 5 X 5 neighbor-
hood case (see the text).

indications of which integer values to use, but the choices are always confirmed by

the resulting values of the difference expressions Diff .
As in the 3 X 3 neighborhood case the difference from the EDT along the hne

x = M, 0 < y < M have been plotted as a function of y, Fig. 10. The solid curve,
marked OPT1, represents the difference when a=1, b= V2, and ¢ = Copt- 1hE
function depends on a and ¢ for y < M/2, and on b and ¢ for y > M/2. The

maximum absolute difference occurs in the first interval, and at y = M /2.
The dashed curve in Fig. 10, marked IS5, represents the difference function for the

recommended integer approximation in the 5 X 5 neighborhood case, a = 5, b = 7,
and ¢ = 11 (see Sect. 3.4).

3.3. 7% 7 Neighborhood

Now consider a 7 X 7 pixel neighborhood. The general DT mask is the one in
Fig. 11. There are five local distances to be determined. As in the 5 X 5 neighbor-

hood case some of the mask-pixels can be exchuded.
The geometry of this case is shown in Fig. 12. As before the difference between

the DT and EDT is minimized along x = M, 0 <y < M. A minimal path sull

DEaEDED
e e el
BEESDOEE
o N N A
e =
BEanEnas

Fic. 11. The 7 X 7 neighborhood mask. The local distances a, b, ¢, d, and e are to be optimized.
The empty mask-pixels are not needed in the computatioms (see the text).
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Fig. 12. The geometry of the DT in the 7 X 7 neighborhood case. The local distances in the small
upper diagram are used. The distance between the lower left-hand pixel and all pixels wath v = A ap¢
computed. The solid lines are examples of the four occurring types of minimal paths.

consists of two straight segments. However, there are now four different types of
minimal paths, exemplified by the four solid lines in Fig. 12. The changes between
the different types of minimal paths occur at y = M/3, y = M/2, and y = 2M/3.

If the local distance values are suitably constrained (cf. (4)), then the value of the
DT in the four different intervals 1s, for 0 <y < M/3:

T.(y)=y*d+ (M- 3y)*a=y(d - 3a) + Ma; (29)
for M/3 <y < M/2:
T.(y) =By —M)*c+ (M —2y)*xd=y(3c—2d) + M(d — ¢); (30)
for M/2 <y < 2M/3:
Ts(y) =2y -~ M)*e+ (2M = 3p)*xc=y(2e — 3c) + M(2c —¢); (31)
and for 2M/3 <y < M:
T.(y) =By —2M)*b+ (M —y)xe=y(3b—¢) + M(e — 2b). (32)

If the local distance e is excluded (the reason for excluding it will be explained
later) (31) and (32) are replaced by, for M/2 <y < M:

I(y) = Qy—M)xb+ (M —y)rc=yQ2b—c)+ M(c—5). (33

The maximum difference between the DT and the EDT occurs either within the four
intervals, where the derivative of the difference T, — EDT is zero, or at ihe ends of

the intervals.
Let a = 1 as in the 5 X 5 neighborhood case. Then the difference beiween D1
and EDT is zero for y = 0. There are now eight different expressions that will
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determine the maximum absolute difference. The expressions for the maxima within
the intervals are computed using (29)-(32) and the general formula (9). The
expressions for the ends of the intervals can also be found using (29)-(32). The eight
expressions become .

Diff, = (1 - (- 3)° ) M, - (34)
Diff, = (d - V10)* M /3, - (35)
Diff, = (d = ¢ — /1 - @Bc~d)* )M, (36)
Diff, = (¢ — V5 )* M/2, (37)
Diff = (2¢ — e — |1 — (2¢ - 3¢)’ ) * M, (38)
Diff, = (e — V13 )* M /3, (39)
Diff7=(b—-e—-—\/l—(e—-Zb)z)*M,and O (40)
Diff, = (b— V2 )* M, . (41)

where the number 7 in Diff, corresponds to the area and line numbexs in Fig. 12.
If e is not used then Diff 5, Diff ¢, and Diff ,, (38)-(40), are replaced by the single
expression (see (33)):

Diff, = (¢ — b - J1-(2b—¢)’ )+ M. (42)

As before, the task is to determine b, ¢, d, and e so that the absolute maximum
of all the expressions Diff, is minimized. When (34)—(41) are studied 1t becomes
apparent that the only critical local distance 1s d, i.e., the approximation is worst 1n
area 1, as in the 5 X 5 case (and for the same reason). The optimal d s the solution
of Diff, = — Diff,, (34) and (35), which 1s

d, = (24 + V10 + /10810 — 324) /10 =~ 3.13487. (43)

The absolute max_imum difference then becomes (substituting (43) mto (35)),

maxdiff = (9/10 — 24 — {108/10 — 324 )/30 = 0.00914»M.  (44)

With d = d, the other three constants, b, ¢, and e, can be allowed to vary within
certain small intervals, without increasing maxdiff. The intervals are determined by

finding out which Diff, that becomes critical at each end of the interval, and then

solving the equation Diff, = maxdiff.
The lower limit for b is determined by — Diffg = —Diff, (35) and (41), which

g1ves

boin = (3V2 — V10 + d ) /3 = 1.40508. (45)
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The lower limit fdr ¢ is detérmjned by — Diff ;, = — Dift, (35) and (37), which gives
e = (305 - 2/I0 4 2d,,,)/3 = 2.21780. C (46)

The lower limit for e is_&e_&erniined by — Diff, = — Duff; (35) and (39), which gives

} Ciin= V13 — V10 +d,, = 357814, (47)

The uppcr limits are a litfle more corr;plex to corhpute. The easiest is the upper limjt

for ¢, which 1s determined by Diff; = —Diff,. These expressions, (35) and (36),
contain only 4 and ¢, and solving for ¢ gives

c . = (22d0pt ~ Y10 + 6\/\/1_0- d o — dgpt) /30 =~ 2.25212. (48)

The upper limits for b and e unfortunately depend on each other, as they are both
determined by Diff , = — Dhff,. The constants b and e corresponds to the Euclidean

‘distances Y2 and V13, locally. It would be nice if these Euclidean values were

included in the respective allowed intervals. To achieve this the following constrain-
ing equations are mntroduced:

b =V2 +x and e_.. = V13 + x. (49)

Substituting (49) mto Diﬂ' 5, = —Diff, (35) and (40), and solving for x gives the
following rather daunting expression:

x=(d0pl—24\/§-—\/ﬁ+9\/ﬁ

+/—4d2, + 4(3V2 + 2/10 - 3/13)d,,, — 6(2/20 — 3/26 — 2/130) - 130)/15'
= 0.00417. (50)

Thus the upper limits become (use (49) and (50))

b =V2 + x = 141839 (51)
and
e .. = V13 + x = 3.60972. (52)

Summing up the above expressions (43), (45)-(48), and (51)-(52), the optimal
values of the four local distances b, ¢, d, and e are

' 1.40508 < b_, < 1.41839,

=~ Oopt =~

2.21780 < ¢, < 2.25212,

opt ~

d,,, = 3.13487, and (53)
< 3.60972.

3.57814 < €ope
As has been hinted at before, the local distance e can be excluded without
increasing maxdiff. The reason is that if e is excluded the local distance value of the
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I, = —'Diﬂ“ , (35) and (37), which gives
d g )/3 = 2.21780. (46)

T, = —Diff, (35) and (39), which gives

~ 3.57814. _ (47)

-

d

opt

 compute. The easiest 1s the upper limit
hff,. These expressions, (35) and (36),
S

— d?

opt

d

opt

| /30 ~ 2.25212. (48)

depend on each other, as they are both
ts b and e corresponds to the Euclidean
e nice 1f these Euclidean values were
To achieve this the following constrain-

max = V13 + x.  (49)

and (40), and solving for x gives the

L — 6(2/20 — 3/26 — 2/130) - 130)/15

(50)
(50))
~ 1.41839 (51)
~ 3.60972. (52)

(45)—(48), and (51)-(52), the optimal
id e are |

(53)

| distance e can be excluded without
excluded the local distance value of the
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vector (3,2) is approximated by b + ¢ instead of by e, see Fig. 12. Values for b and
¢ can be chosen within their allowed intervals, (53), so that their sum is within the
allowed interval for e, and thus maxdiff is unchanged. (Obviously the actual DT
values do become different.) - o
If e is excluded Diff, is valid instead of Diff 5, Diff s, and Difl ;. The optimal value
of d is not affected, as Diff, and Diff, still are the same. The lower limits for b and
¢ are also unchanged. However, the upper himits of b and ¢ now becomes
determined by Diff, = — Diff,. As before these upper limits are dependent on each
other. The allowed intervals are now much smaller (as could be expected), so that V2
and V5 cannot be included in the respective intervals. Extra arbitrary constraints
must be added as before. In this case the constraint is that both imtervals should be
equally long:

b min + X and € max = Cmin + X. (54’)

w=b

m

~ Substituting egs. (54) nto Diﬁ“ .= —Diff, (35), and (42), and solving for x gives the

value of x as

X = Cmin - 2bmin

+ \/6(‘/17 _ dopt)(cmin _ bmin) o 9(cmin o bmin.)z o d{fpt + 2‘/1706{0@1 — 1 /3
~ 0.00284. , (55)

Inserting (55) into (54) give the upper limits for b and c:

b =~ 1.40791 (56)

and
¢ .. = 2.22063. (57)

Summing up the new results (56) and (57) and using the old results in (53), the
optimal values of the local distances b, ¢, and & becomes

1.40508 < by, < 1.40791,
221780 < Cop < 222063, and
d,p, = 3.13487. (58)

To exclude the local distance e will speed up the DT computation, without
increasing the maximum difference from the ED'T. There will then be 25 instead of

33 pixels in the DT mask (Fig. 11), and thus eight sums less to be computed in each

step.

As in the previous cases the difference from the EDT along the line x = M,
0 < y < M have been plotted as a function of y, Fig. 13. The solid curve marked
OPT1, shows the difference when a =1, b= V2, ¢ = V5, d = d,,, and e = V13.
The maximum absolute difference occurs in Area 1 and on Lime 2 (Fig. 12). The
difference is zero for y =0, y=M/2, y=2M /3, and y = M.

The solid curve marked OPTIM (Minus e) shown the difference when a = 1,

= 1.407, ¢ = 2.220, and d = d,. This curve OPTIM is exactly the same as OPT1
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Fic. 13. The difference between some DTs and EDT along the line y = M in the 7 X 7 neighbor-
hood case (see the text).

oL

for 0 <y < M/3. For y > M /3 the curves differ, and on the average OPTIM is

farther from zero than OPT]I.

The dashed curves, 112 and i15M, represents the difference function for the two
“best™ integer approximations in the 7 X 7 neighborhood case: For 112 the local
distances are a = 12, b =17, ¢ =27, d = 38, and e = 43; and for I15M they are
a=15, b =21, c = 33, and d = 47. The maximum of I12 is slightly less than the

“maximum of J15M. See Section 3.4.

The optimal real-valued local distances for neighborhoods up to 7 X 7 pixels have
now been computed, together with the maximal difference between the DT and the
EDT in each case. These results are interesting in themselves. In the nexi section the
real-valued results will be used to develop integer-valued DTs.

3.4. Imteger Approximations

In most digital image processing apphications it 1s preferable to use only integers,
if possible, as was remarked above. In this section the best integer approximations
to the optimal local distances will be determined.

Integer approximatsons are found by multiplying all the local distances with an
integer factor n, and rounding to the mearest integer. Thus a = n, where a 1s the
local distance between horizontal /vertical neighbors. All computed distances are of
course multiplied with the factor n. If that is undesirable in the application, then
division by n before actually using the distance value is the remedy. In Table 1
integer approximations for the 3 X 3 meighborhood case are shown. Maxdiff, the
upper limit of the difference from the Euclidean distance, can be computed from the
expressions Diff | 1n Section 3.1, (10) and (12):

n n n n

a b a b
maxdliff = max Diffzg-—,—) , Diff3(—,—-) : (59)

where n is the scaling factor. (Dividing by n corresponds to diving ihe computed
DT by n, to normalize it.) Diff;, (11), i1s always zero.
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TABLE 1

Integer Approximaiions of the Optimal Local Distances for
| a 3 X 3 Neighborhood

a ‘ b . maxdiff
2 3 0.1340
3 4 0.0809
8§ 11 0.0730
11 15 0.0685
14 . 19 0.0660
17 23 0.0644
© 20 27 0.0642
1 opt 0.0635
opt opt (0.0449

The approximation gets better with increasing scaling factors. Table 1 starts with
n = 2, and then all approximations with a smaller maxdiff than any previous one
are listed, up to n = 20. For the sake of comparison maxdiff for the optimal a and b
are also listed. The 3-4 approximation is the recommended one. Maxdiff is not too
far from the optimal one, and the scaling factor has to increase to 8, which is rather
large, before a better approximation is found. The difference from the EDT is
shown as a dashed curve in Fig. 7.

In Table 2 one integer approximation in the 5 X 5 neighborhood case is shown.

‘Maxdiff is here computed as the maximum of the expressions (21)-(24), cf (59). The

only integer approximation listed in Table 2 is 5-7-11. The maximum difference 1s
very close to the optimal value, so close that the scaling factor has to be 51 (sic!)
before a better approximation is found. That this approximation is almost optimal
is also apparent from the curve showing the difference from EDT 1n Fig. 10. This
5-7-11 approximation is obviously a very good DT, with a maximum difference
from the EDT of only about 2%. Note also that maxdiff is here only a fourth of the
value for the recommended 3 X 3 neighborhood!

The integer approximations for the 7 X 7 neighborhood is shown in Table 3. In

the upper part of the table the local distance e is excluded, and maxdiff 1s computed

from (34)-(37), (41), and (42). The listed approximations start where maxdift
becomes lower than for the recommended 5 X 5 approximation. That does not
occur until n = 14, and even then the improvement is very small. In the lower part

TABLE 2

Integer Approximation of the Optimal Local Distances for
a 5 X 5 Neighborhood

d b ¢ maxdiff
5 7 11 0.0202
1 opt opt 0.0196
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TABLE 3

Integer Approximations of the Optimal Local Distances for
a 7 X T Neighborhood

d b ¢ - d | e maxdiff
4 - 20 31 - 44 _ 0.0197
15 21 33 47 — 0.0180
17 24 38 . 53 — 0.0147
19 - 27 42 60 — 0.0142
1 opt  opt opt — 0.0091
12 17 27 38 43 0.0140
19 27 42 60 68 0.0128
i opt  opt opt opt 0.0091

Note. In the upper part of the table the local distance e 1s not
used. Even though the optimal maxdiff is the same in both cases,
the approximations become better using e.

s
o
E o
X 1 O

F1G. 14. The two recommended integer DTs with neighborhood size at most 7 X 7.

of Table 3 the local distance e is included. With n = 12 maxdiff does become
somewhat lower than in the 5 X 5 case, but the difference is still too small to justify
the additional computational complexity. Therefore no 7 X 7 integer approximation
is recommended. However, the two “best” approximations are shown in Fig. 13.
The masks for the two recommended DTs are shown in Fig. 14. The 3 X 3
neighborhood algorithm gives an “error” of at most 8%, and the 5 X 5 neighbor-
hood algorithm gives an “error” of at most 2%. The algorithms can be implemented
either in parallel (1), or sequentially (2). There 1s no reason to use a 7 X T

neighborhood if the local distances are integers!
Before discussing these results in more detail the two recommended DTs will be

compared to four other well-known DTs. The six DTs will be applied to several
image processing tasks. The optimal real-valued DTs will also be illustrated.

4. EXAMPLES AND COMPARISONS

Here six different distance transformations will be presented, Sectior 4.1. These
will be applied to different digital image processing tasks, Sections 47-4.4. The
results will be illustrated and compared, mostly as pictures.
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3 .
ptimal Local Distances for
borhood
f e maxdiff
4 — 0.0197
7 — 0.0180
3 — 0.0147
0 — 0.0142
Y _ 0.0091
8 43 0.0140
D 68 0.0128
ot opt 0.0091

— i —————— ——— —m—am —r -

' * ble the local distance ¢ 15 not
diff is the same in both cases,

using e.

. with neighborhood size at most 7 X 7.

d. With n = 12 maxdiff does become
the difference is still too small to justify
erefore no 7 X 7 integer approximation
pproximations are shown in Fig. 13.

)Ts are shown in Fig. 14. The 3 X 3
" at most 8%, and the 5 X 5 neighbor-
'%. The algorithms can be implemented

There is no reason to use a 7 X7

ers!

tail the two recommended DTs will be
[he six DTs will be applied to several
ued DTs will also be illustrated.

COMPARISONS

1s will be presented, Section 4.1. These
rrocessing tasks, Sections 4.2-4.4. The
stly as pictures. |
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4.1. The Six Dzstance Transformations

City Block. This is the simplest and fastest of all DTs It 15, however, also the
worst approx1mat1_0n of the Euclidean distance. It is, among other places, found in

[7}. The city block DT is described by the general 3 X 3 neighborhood mask, Fig. 4,

with'a=1 and b = inﬁnity, i.e., the diagonal neighbors are ignored. As for all
algorithms descrlbed by the mask the computatlon can be either parallel, (1), or
sequential, (2). .

Chessboard. This DT which is also found in [7), is described by the mask in Fig.

4, with a=1and b= 1. |
Octagonal. This DT is a mix of the city block and the chessboard DTs. The

underlying idea is to use the two DTs alternately, as city block distances are always
too large, and chessboard distances always too small. Presentation of it, and a
parallel algorithm for computing it are found in [3]. In the simplest case each DT is
used every other time. Other octagonal algorithms are also described in [3], where
the city block and chessboard DTs are mixed in more complex ways, to get a better
approximation of EDT. A sequential algorithm for computing the simplest octago-
nal distance using, four passes over the image, 15 found in {8} and described with DT
masks 1n [1].

Chamfer 3—4. This 1s the 3 X 3 neighborhood mteger DT from Section 3.4. It 1s
called a “chamfer” DT because the distance values are “chamfered out” in two
passes over the image when the computation is sequential [6, 4, 1].

Chamfer 5-7-11. This is the 5 X 5 neighborhood integer DT from Section 3.4.
This new DT is the key result of Section 3.

Euclidean. This is the true Euclidean distance, i.e., EDT. For sequential compu-

tation of EDT the best published algorithm is probably [8], even though the results

are not always quite correct. Due to complex feature geometry errors can occur, but

diffiM

¥ A

0.6 1

CITY BLOCK

0.4 -

0.2 -

0.0 -

-0.2 -

-0[, "

FiG. 15. The difference between the six DTs to be used in section 4 and EDT. The chessboard and
octagona! curves coincide in the first half of the interval.
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they are always small. This sequential algorithm uses four passes of a 3 x 3
neighborhood over the image; the sum of two squares must be computed for each of
the nine mask-pixels; and it needs two extra images of the same size as the origing]
one to store intermediate results (the number of vertical and horizontal steps o the
nearest feature pixel). A parallel EDT algorithm that always gives correct resitiis hag
been published, [9]. This algorithm also uses a 3 X 3 neighborhood; the sum of two
squares must be computed for each mask-pixel; and it meeds two extra images to
store intermediate .results (the signed number of steps to the nearest feature pixel),
The number of iterations is proportional to the longest distance i the image.

The difference from the EDT for all the six DTs 1s shown in Frg. 15. The curves
show the difference along the line x = M, 0 <y < M, cf. Fig. 5. All DTs give the
correct distance value along horizontal and vertical lines, and thus all curves start at
zero. The city block and chessboard DTs are the worst approximations («ad the

City block Chessboard

Octagonal

Chamfer 5-7—11 Euclidean

FiG. 16. The distances from a poimt for the six DTs. The lighter the color the: larges the distance.
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T

Citﬂf block Che"é'sbourd

0ctagonal

FiG. 17. The difference between the caty block, chessboard, and octagonal DTs and the EDT (see the
text). |

most used DTsY). The octagonal, 3-4, and 5-7-11 are progressively better. The

EDT is of course always correct.

4.2. “Circles” and Difference from Euclidean Distance

In Fig. 16 the distance from a point, i.e., a single pixel, have been computed using
the different DTs. The distance from the central pixel to the edge i1s 100 pixels. The
distance values have been grey-level coded: the larger the distance the highter the
color. The images illustrate the “circles” of the different DTs. The city block and
chessboard circles are square. The octagonal circle is an octagon (as the name
implies). The chamfer 3-4 circle is also an octagon, but one that is a better
approximation of the Euclidean circle than the octagonal one. However, it 1s not
quite regular, which may be a problem in applications where rotation occurs. The
chamfer 5-7-11 circle is a hexadecagon, i.e., a polygon with 16 sides.

Previously the difference between the DTs and the EDT have been measured by

its maximum, and it has also been illustrated in a number of diagrams, Figs. 7, 10,
13, and 15. Here the difference is illustrated as grey-level images: the lighter the

~color, the greater the absolute difference. The difference images have been computed

from the images in Fig. 16, so that the difference “fields” around a point are
1llustrated.

The difference images for the city block, chessboard, and octagonal distances are
found in Fig. 17. The grey-level scale is the same for the city block and chessboard
DTs, but different for the octagonal distance, because otherwise the image would
have been almost completely black. For the city block and chessboard DTs the
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Chamfer 1-Dgpt

b

Chamfer 3-4

FiG. 18 The difference between the two optimal and the integer 3 X 3 neighborthood DTs and the
EDT (see the text). -

difference is greatest along the diagonals. The maximal differences i the images are
586 and +41.4, respectively. For the octagonal DT the difference is greatest at
the corners of the associated octagonal circle. The maximal difference 1s + 11.8.
Difference images have been computed for three 3 X 3 neighborlnood DTs, Fig.
18. The first image shows the difference when both local distances a and b have
their optimal values (17). The difference “ field” is then very regular. The second
image shows the difference when a =1 and b is optimal (15). Fimally the third
image is the difference for the 3—4 integer approximation. The diffexence from the
optimal image is not too great, but the difference is larger, especially along the

diagonals. The maximal difierences are +45, +64, and —8.1, respectively.

ffff

t

Chamfer ll-ﬁ-—cont Chamfer 5-7-11

FiG. 19. The difference between the two 5 X 5 neighborhood DTs and the EDT (scc the text)
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G

Chessboard

i

Octagonal Chamfer 3—4

Chamfer 5-7-11 “ Euc] idean

F1G. 21. The distances from an object for the six DTs. The lighter the color the larger the distance.
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For 5 X 5 neighborhoods two difference imagés have been computed, Fig. 19, The
first is the optimal case, a =1, b = 2 ,and ¢ = Copts (26); and the second is the
5—7-11 integer approximation. The images are-all but indistinguishable, but if yoy
look closely, there 1s a _discernible difference along the diagonals. The maximal
absolute differences are +1.96 and +2.02. :
~ Finally the difference image for the optimal 7 X 7 neighborhood DT have beep
computed, Fig. 20. The local distances are those where e has been excluded, (58),
with b and ¢ about . in the middle of their allowed intervals. The maximal absolute
difference is only +0.91, and thus the image is very dark. (The grey-levels are the

same as in Fig. 19.)

4.3. Distance from an Object

In some applications the distance from an object, or object contour, must be
computed. One such case is when the distance values are used to compute a
matching measure, i.e., a value that measures how close to each other the shape of
two different objects or contours are, [10]. The matching algorithm presented there

performed better the better the DT approximated the EDT. (The city block,

chamfer 3—4, and Euchidean DTs were tested.)
As an illustration the distance from a maple leaf have been computed for the six

DTs, Fig. 21. The distance is grey-level coded as before: the larger the distance, the
lighter the color. The size of the images are 200 X 200 pixels. It 1s very obvious that
even when the distance is computed from a complex shape, the “flavor” of the

- distance is preserved. Note also how close the chamfer 3-7-11 DT 1s to the EDT.

4.4. Pseudo-Dirichlet Tessellations

Consider a set of points in the plane. Then divide the plane into polygonal areas
such that each area contains one point, and the part of the plane that is nearer to
that point than to any other. Such a division of the plane is called a Dirichlet, or
Voronoi, tessellation. The polygonal areas are called tiles. An example of such a
tessellation is found in Fig. 22. Dirichlet tessellations in the image processing

context are described in [11}.

FiG. 22. A Dirichlet tessellation with ten kernel points. Each tile consists of the arca that is closer 1o

its kernel point than to any other point.
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There are several uses of Dirichlet tessellations in image processing. In [11] they
are mostly used in the context of texture descriptions. Another application is when
objects in an image must be ordered in such a way that neighbors in the image are
close to each other in the list, [12]. However, in neither application the fact that the
image is actually digital rathér than continuous is taken into account. The line
dividing the tiles are computed analytically (see, e.g., [13]).

In a digital image there is another way of computing the Dirichlet tessellation:
Compute a DT from all the kernel points of the tessellation, while at the same time

keeping track of from which point the distance is computed. The computation must

be done 1n parallel, (1). |

First create a new image of the same size as the original one, and mark each
kernel point pixel with a unique number identifying it. At each iteration of the DT,
the pixels in the new 1mage that corresponds to the pixels that get new values in the

City block Chessboard

0ctagonal | Chamfer 3-4

Chamfer 5-?—11 - Eucl idean

F1G. 23.  Pseudo-Dinichlet tessellations computed for the same set of points, using different DTs.
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- distance image are marked with the number of the kernel point from which the

distance is computed. Note that this number may 1n some cases change at the mext
iteration! When the algorithm stops, all pixels will have been identified as belonging
to a certain tile, except those that have the same distance to more than one kerne]

- point. The resulting tessellation is here called a pseudo-Dirichlet tessellation, as the

tessellation is digital and the result depends on the DT used.

The pseudo-Dirichlet tessellation have been computed for 12 kernel points in a
50 X 70 pixel image. The results are shown in Fig. 23. Each tile is identified by 4
certain grey-level. The kernel points are black. The pixels that do not belong uo a
unique tile are white. The outlines of the tiles for the correct Euclidean tessellation
i.e., the digital EDT, are overlayed in black. ’

The main difficulty with the city block DT is that large areas are not assigned to
any tile. Note the two large white areas center right in the image. For the chessboard
DT many of the pixels get assigned to the wrong tile. Note, €.g,, the long “arm™ of
the dark grey tile in the lower right corner. The results of the octagonal DT gare
much better, even though many pixels are unassigned. For the chamfer 3—4 DT the
result is almost correct, even if a few pixels between the tiles are unassigned, amd a
few are assigned to the wrong tile. Finally for the chamfer 5-7-11 DT the results
are almost correct, i.e., almost equal to the results for the EDT.

5. CONCLUSIONS AND RECOMMENDATIONS

A digital distance transformation converts a binary image to a distance image. A
distance transformation that gives the correct Fuchidean distances have here been
called EDT. Suggested EDT algorithms are too computationally complex to be
really attractive (Sect. 4.1). Thus distance transformation algorithms that use omly a
small image neighborhood and work within the image itself, i.e., do not need any
extra memory, are needed. They have here been called DTs. Several DTs have been
suggested in the literature (Sect. 4.1). In {1] the 3 X 3 neighborhood DTs were
optimized and analyzed. This paper gives some new results for these DTs and, more
importantly, extends the results to larger neighborhoods.

A number of DTs are now available. However, the problem of choosing the best
distance transformation seems seldom to get much consideration. As the examples
in Section 4 show, this is probably a mistake. The DT used may nfluence the results
of the application to a large degree, and not in an advantageous way. Therefore

- some thought should be spent on the choice. Note that any of the six DTs in Section

4 may be the right choice, depending on the application.

In some digital image processing applications, where a distance transformation is
needed, it is necessary to use the correct Euclidean distance. In other cases the
distance should be as close to EDT as possible, but need not be quite exact. Then
the new chamfer 5—7—11 DT is an ideal choice. If the accuracy needed is somewhat
less, then the chamfer 3—4 DT, which is less computationally complex, may be the
best choice. One common case when the distances need not be quite exact 1 when
the images to which the DT is applied are somewhat noisy. Computing exact
distances from inexact features is not reasonable, at least not when the exact
distances are more computationally costly than adequate approximations.

If the DT computations can be performed in parallel, then the octagonal D'F may
be good enough; (the sequential algorithm uses four passes over the image and 15
thus too computationally complex compared to its resulting accuracy). The octago-
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nal DT has the advantage of only using the local distance ome, and also that the
distance values are not multiplied by any scale factor. The chessboard DT can be
advantageous for images consisting mainly of rectangles with the sides parallel to
the coordinate axis, e.g., house or street scenes. Finally the city block distance is the

fastest to compute, and where speed is essential rather than accuracy it may be the
best choice.

The two most important results in this paper are thus

*The new chamfer 5-7-11 distance transformation, illustrated in Fig. 14.

*The msight that for all applications using a distance transformation some
effort should be spent on choosing the “right” one. The results may differ consider-
ably for different distance transformations.
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