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Image Partitioning and Perceptual Organization

A Computational Approach to Edge Detection

JOHN CANNY, MEMBER, IEEE

Abstract—This paper describes a computational approach to edge
detection. The success of the approach depends on the definition of a
comprehensive set of goals for the computation of edge points. These
goals must be precise enough to delimit the desired behavior of the
detector while making minimal assumptions about the form of the so-
lution. We define detection and localization criteria for a class of edges,
and present mathematical forms for these criteria as functionals on the
operator impulse response. A third criterion is then added to ensure
that the detector has only one response to a single edge. We use the
criteria in numerical optimization to derive detectors for several com-
mon image features, including step edges. On specializing the analysis
to step edges, we find that there is a natural uncertainty principle be-
tween detection and localization performance, which are the two main
goals. With this principle we derive a single operator shape which is
optimal at any scale. The optimal detector has a simple approximate
implementation in which edges are marked at maxima in gradient mag-
nitude of a Gaussian-smoothed image. We extend this simple detector
using operators of several widths to cope with different signal-to-noise
ratios in the image. We present a general method, called feature syn-
thesis, for the fine-to-coarse integration of information from operators
at different scales. Finally we show that step edge detector perfor-
mance improves considerably as the operator point spread function is
extended along the edge. This detection scheme uses several elongated
operators at each point, and the directional operator outputs are in-
tegrated with the gradient maximum detector.

Index Terms—Edge detection, feature extraction, image processing,
machine vision, multiscale image analysis.

1. INTRODUCTION

DGE detectors of some kind, particularly step edge
detectors, have been an essential part of many com-
puter vision systems. The edge detection process serves
to simplify the analysis of images by drastically reducing
the amount of data to be processed, while at the same time
preserving useful structural information about object
boundaries. There is certainly a great deal of diversity in
the applications of edge detection, but it is felt that many
applications share a common set of requirements. These
requirements yield an abstract edge detection problem, the
solution of which can be applied in any of the original
problem domains.
We should mention some specific applications here. The
Binford-Horn line finder [14] used the output of an edge
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detector as input to a program which could isolate simple
geometric solids. More recently the model-based vision
system ACRONYM [3] used an edge detector as the front
end to a sophisticated recognition program. Shape from
motion [29], [13] can be used to infer the structure of
three-dimensional objects from the motion of edge con-
tours or edge points in the image plane. Several modern
theories of stereopsis assume that images are prepro-
cessed by an edge detector before matching is done [19]1,
[20]. Beattie [1] describes an edge-based labeling scheme
for low-level image understanding. Finally, some novel
methods have been suggested for the extraction of three-
dimensional information from image contours, namely
shape from contour [27] and shape from texture [31].

In all of these examples there are common criteria rel-
evant to edge detector performance. The first and most
obvious is low error rate. It is important that edges that
occur in the image should not be missed and that there be
no spurious responses. In all the above cases, system per-
formance will be hampered by edge detector errors. The
second criterion is that the edge points be well localized.
That is, the distance between the points marked by the

~ detector and the ‘‘center’’ of the true edge should be min-

imized. This is particularly true of stereo and shape from
motion, where small disparities are measured between left
and right images or between images produced at slightly
different times.

In this paper we will develop a mathematical form for
these two criteria which can be used to design detectors
for arbitrary edges. We will also discover that the first two
criteria are not ‘‘tight’’ enough, and that it is necessary
to add a third criterion to circumvent the possibility of
multiple responses to a single edge. Using numerical op-
timization, we derive optimal operators for ridge and roof
edges. We will then specialize the criteria for step edges
and give a parametric closed form for the solution. In the
process we will discover that there is an uncertainty prin-
ciple relating detection and localization of noisy step
edges, and. that there is a direct tradeoff between the two.
One consequence of this relationship is that there is a sin-
gle unique ‘‘shape’’ of impulse response for an optimal
step edge detector, and that the tradeoff between detection
and localization can be varied by changing the spatial
width of the detector. Several examples of the detector
performance on real images will be given.

II. ONE-DIMENSIONAL FORMULATION

To facilitate the analysis we first consider one-dimen-
sional edge profiles. That is, we will assume that two-
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Fig. 1. (a) A noisy step edge. (b) Difference of boxes operator. (c) Dif-

ference of boxes operator applied

to the edge. (d) First derivative of

Gaussian operator. (e) First derivative of Gaussian applied to the edge.

dimensional edges locally have a constant cross-section
in some direction. This would be true for example, of
smooth edge contours or of ridges, but not true of comers.
We will assume that the image consists of the edge and
additive white Gaussian noise.

The detection problem is formulated as follows: We be-
gin with an edge of known cross-section bathed in white
Gaussian noise as in Fig. 1(a), which shows a step edge.
We convolve this with a filter whose impulse response
could be illustrated by either Fig. 1(b) or (d). The outputs
of the convolutions are shown, respectively, in Fig. 1(c)
and (e). We will mark the center of an edge at a local
maximum in the output of the convolution. The design
problem then becomes one of finding the filter which gives
the best performance with respect to the criteria given be-
low. For example, the filter in Fig. 1(d) performs much
better than Fig. 1(b) on this example, because the re-
sponse of the latter exhibits several local maxima in the
region of the edge. ‘

In summary, the three performance criteria are as fol-
lows:

1) Good detection. There should be a low probability

of failing to mark real edge points, and low probability of
falsely marking nonedge points. Since both these proba-
bilities are monotonically decreasing functions of the out-
put signal-to-noise ratio, this criterion corresponds to
maximizing signal-to-noise ratio.

2) Good localization. The points marked as edge points
by the operator should be as close as possible to the center
of the true edge.

3) Only one response to a single edge. This is implic-
itly captured in the first criterion since when there are two
responses to the same edge, one of them must be consid-
ered false. However, the mathematical form of the first
criterion did not capture the multiple response require-
ment and it had to be made explicit.

A. Detection and Localization Criteria

A crucial step in our method is to capture the intuitive
criteria given above in a mathematical form which is read-
ily solvable. We deal first with signal-to-noise ratio and
localization. Let the impulse response of the filter be f(x),
and denote the edge itself by G(x). We will assume that
the edge is centered at x = 0. Then the response of the
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filter to this edge at its center Hg is given by a convolution
integral:

+W
Hg = S’_W G(—x) f(x) dx (1)

assuming the filter has a finite impulse response bounded
by [— W, W]. The root-mean-squared response to the
noise n(x) only, will be

+W 12
H, = noH_sz(x) dx] @

where n3 is the mean-squared noise amplitude per unit
length. We define our first criterion, the output signal-to-
noise ratio, as the quotient of these two responses.

+W
S_W G(—x) f(x) dx
SNR = 3)

W
ny S_sz(x) dx

For the localization criterion, we want some measure
which increases as localization improves, and we will use
the reciprocal of the root-mean-squared distance of the
marked edge from the center of the true edge. Since we
have decided to mark edges at local maxima in the re-
sponse of the operator f(x), the first derivative of the re-
sponse will be zero at these points. Note also that since
edges are centered at x = 0, in the absence of noise there
should be a local maximum in the response at x = 0.

Let H,(x) be the response of the filter to noise only, and
Hg(x) be its response to the edge, and suppose there is a
local maximum in the total response at the point x = x,,.
Then we have

Hy(xo) + Hg(x) = 0. C))
The Taylor expansion of Hg(x,) about the origin gives
Hg(xg) = Hg(0) + HE(0)xo + O(x). &)

By assumption H;(0) = 0, i.e., the response of the fil-
ter in the absence of noise has a local maximum at the
origin, so the first term in the expansion can be ignored.
The displacement x; of the actual maximum is assumed
to be small so we will ignore quadratic and higher terms.
In fact by a simple argument we can show that if the edge
G(x) is either symmetric or antisymmetric, all even terms
in xo vanish. Suppose G(x) is antisymmetric, and express
f(x) as a sum of a symmetric component and an antisym-
metric component. The convolution of the symmetric
component with G(x) contributes nothing to the numerator
of the SNR, but it does contribute to the noise com-
ponent in the denominator. Therefore, if f(x) has any
symmetric component, its SNR will be worse than a
purely antisymmetric filter. A dual argument holds for
symmetric edges, so that if the edge G(x) is symmetric or
antisymmetric, the filter f(x) will follow suit. The net re-
sult of this is that the response Hg(x) is always symmet-

—_—

ric, and that its derivatives of odd orders [which appear
in the coefficients of even order in (5)] are zero at the
origin. Equations (4) and (5) give

c(0)xo = — Hy(xo). (6)

Now H;(x,) is a Gaussian random quantity whose vari-
ance is the mean-squared value of Hj(x), and is given
by

+W

ElH,(x)"] = nj S_Wf’z(x) dx ™

where E[ y] is the expectation value of y. Combining this
result with (6) and substituting for Hg(0) gives

+W
nj § FHx) dx

2 -Ww
E[xo] =

W 2 = 8x3 (8)
H W G'(—x) f'(x) dx]

where 8x, is an approximation to the standard deviation
of xo. The localization is defined as the reciprocal of §x;.

W
S_W G'(=2) f'®) dv
Localization = - . )

+W
no §_Wf'2<x> dx

Equations (3) and (9) are mathematical forms for the
first two criteria, and the design problem reduces to the
maximization of both of these simultaneously. In order to
do this, we maximize the product of (3) and (9). We could
conceivably have combined (3) and (9) using any function
that is monotonic in two arguments, but the use of the
product simplifies the analysis for step edges, as should
become clear in Section III. For the present we will make
use of the product of the criteria for arbitrary edges, i.e.,
we seek to maximize

+W +W
S_W G(—x) f(x) dxl S_W G'(=x) f'x) dXI

(10)

+W

+W
ny S Ay de ny S f2x) dx
-W -W

There may be some additional constraints on the solution,
such as the multiple response constraint (12) described
next.

B. Eliminating Multiple Responses

In our specification of the edge detection problem, we
decided that edges would be marked at local maxima in
the response of a linear filter applied to the image. The
detection criterion given in the last section measures the
effectiveness of the filter in discriminating between signal

and noise at the center of an edge. It does not take into

account the behavior of the filter nearby the edge center.
The first two criteria can be trivially maximized as fol-
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jows. From the Schwarz inequality for integrals we can
show that SNR (3) is bounded above by

W
no_l S—w G*(x) dx

and localization (9) by

+W
ny'! H_W G™(x) dx.

Both bounds are attained, and the product of SNR and
localization is maximized when f(x) = G(—x) in [- W,

Thus, according to the first two criteria, the optimal
detector for step edges is a truncated step, or difference
of boxes operator. The difference of boxes was used by
Rosenfeld and Thurston [25], and in conjunction with lat-
eral inhibition by Herskovits and Binford [11]. However
it has a very high bandwidth and tends to exhibit many
maxima in its response to noisy step edges, which is a
serious problem when the imaging system adds noise or
when the image itself contains textured regions, These ex-
tra edges should be considered erroneous according to the
first of our criteria. However, the analytic form of this
criterion was derived from the response at a single point
(the center of the edge) and did not consider the interac-
tion of the responses at several nearby points. If we ex-
amine the output of a difference of boxes edge detector
we find that the response to a noisy step is a roughly tri-
angular peak with numerous sharp maxima in the vicinity
of the edge (see Fig. 1).

These maxima are so close together that it is not pos-
sible to select one as the response to the step while iden-
tifying the others as noise. We need to add to our criteria
the requirement that the function f will not have ‘‘too
many’’ responses to a single step edge in the vicinity of
the step. We need to limit the number of peaks in the
response so that there will be a low probability of declar-
ing more than one edge. Ideally, we would like to make
the distance between peaks in the noise response approx-
imate the width of the response of the operator to a single
step. This width will be some fraction of the operator
width W.

In order to express this as a functional constraint on f,
we need to obtain an expression for the distance between
adjacent noise peaks. We first note that the mean distance
between adjacent maxima in the output is twice the dis-
tance between adjacent zero-crossings in the derivative of
the operator output. Then we make use of a result due to
Rice [24] that the average distance between zero-cross-
ings of the response of a function g to Gaussian noise is

~R(O) 12
Xave = T R ,,(0)
where R(7) is the autocorrelation function of g. In our

case we are looking for the mean zero-crossing spacing
for the function f'. Now since

an

4+ + o
R©) = S_ g'(x) dx and R"(0) = - s_ 8”() dx

the mean distance between zero-crossings of f' will be

+o 12
S fPx) dx

-0

xzc(f) =7 (12)

+ o
S fnZ(x) dx
-0

The distance between adjacent maxima in the noise re-
sponse of f, denoted xp,,, Will be twice x,.. We set this
distance to be some fraction & of the operator width.

Xmax (f) = 2x,(f) = kW. (13)

This is a natural form for the constraint because the re-
sponse of the filter will be concentrated in a region of
width 2 W, and the expected number of noise maxima in
this region is N, where

(14)

Fixing k fixes the number of noise maxima that could lead
to a false response.

We remark here that the intermaximum spacing (12)
scales with the operator width. That is, we first define an
operator f,, which is the result of stretching f by a factor
of w, f,,(x) = f(x/w). Then after substituting into (12) we
find that the intermaximum spacing for f, is x,.(f,) =
wx,( f). Therefore, if a function f satisfies the multiple
response constraint (13) for fixed k, then the function f,
will also satisfy it, assuming W scales with w. For any
fixed k, the multiple response criterion is invariant with
respect to spatial scaling of f.

III. FinpING OpTIMAL DETECTORS BY NUMERICAL
OPTIMIZATION

In general it will be difficult (or impossible) to find a
closed form for the function f which maximizes (10) sub-
ject to the multiple response constraint. Even when G has
a particularly simple form (e.g., it is a step edge), the
form of f may be complicated. However, if we are given
a candidate function f, evaluation of (10) and (12) is
straightforward. In particular, if the function f is repre-
sented by a discrete time sequence, evaluation of (10)
requires only the computation of four inner products
between sequences. This suggests that numerical optimi-
zation can be done directly on the sampled operator im-
pulse response.

The output will not be an analytic form for the operator,
but an implementation of a detector for the edge of inter-
est will require discrete point-spread functions anyway. It
is also possible to include additional constraints by using
a penalty method [15]. In this scheme, the constrained
optimization is reduced to.one, or possibly several, un-
constrained optimizations. For each constraint we define
a penalty function which has a nonzero value when one
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Fig. 2. A ridge profile and the optimal operator for it.
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Fig. 3. A roof profile and an optimal operator for roofs.

of the constraints is violated. We then find the f which
maximizes

SNR(f) * Localization (f) — 22 w;Pi(f)  (15)

where P; is a function which has a positive value only
when a constraint is violated. The larger the value of p;
the more nearly the constraints will be satisfied, but at the
same time the greater the likelihood that the problem will
be ill-conditioned. A sequence of values of u; may need
to be used, with the final form of f from each optimization
used as the starting form for the next. The y; are increased
at each iteration so that the value of P;(f) will be re-
duced, until the constraints are ‘‘almost’’ satisfied.

An example of the method applied to the problem of
detecting ‘‘ridge’’ profiles is shown in Fig. 2. For a ridge,
the function G is defined to be a flat plateau of width w,
with step transitions to zero at the ends. The auxiliary
constraints are

¢ The multiple response constraint. This constraint is
taken directly from (12), and does not depend on the form
of the edge.

* The operator should have zero dc component. That
is it should have zero output to constant input.

Since the width of the operator is dependent on the
width of the ridge, there is a suggestion that several widths
of operators should be used. This has not been done in
the present implementation however. A wide ridge can be
considered to be two closely spaced edges, and the im-

plementation already includes detectors for these. The
only reason for using a ridge detector is that there are
ridges in images that are too small to be dealt with effec-
tively by the narrowest edge operator. These occur fre-
quently because there are many edges (e.g., scratches and
cracks or printed matter) which lie at or beyond the res-
olution of the camera and result in contours only one or
two pixels wide.

A similar procedure was used to find an optimal oper-
ator for roof edges. These edges typically occur at the
concave junctions of two planar faces in polyhedral ob-
jects. The results are shown in Fig. 3. Again there are
two subsidiary constraints, one for multiple responses and
one for zero response to constant input.

A roof edge detector has not been incorporated into the
implementation of the edge detector because it was found
that ideal roof edges were relatively rare. In any case the
ridge detector is an approximation to the ideal roof detec-
tor, and is adequate to cope with roofs. The situation may
be different in the case of an edge detector designed ex-
plicitly to deal with images of polyhedra, like the Bin-
ford-Horn line-finder [14].

The method just described has been used to find optimal

operators for both ridge and roof profiles and in addition .

it successfully finds the optimal step edge operator de-
rived in Section IV. It should be possible to use it to find
operators for arbitrary one-dimensional edges, and it
should be possible to apply the method in two dimensions
to find optimal detectors for various types of corner.

kS
%
2
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IV. A DETECTOR FOR STEP EDGES

We now specialize the results of the last section to the
case where the input G(x) is step edge. Specifically we set
G(x) = Au_(x) where u,(x) is the nth derivative of a delta
function, and A4 is the amplitude of the step. That is,

@ 20, for x < 0; 16)
) =
Hot 1, forx = 0;
and substituting for G(x) in (3) and (9) gives
0
A S Sflx) dx
-w
SNR = 17
W
no ‘H i) ax
-W
Localization = A4S0 (18)

+W
no S fPx) dx

-W

Both of these criteria improve directly with the ratio
Alny which might be termed the signal-to-noise ratio of
the image. We now remove this dependence on the image
and define two performance measures & and A which de-
pend on the filter only:

0
S f&) Xm
A -W
SNR = —L(f) E(f) = 7/
ny +W
H fi) dx
-W
(19)
Localization = Aa A = __1rolL
EE Ny +W
| roa
-w
(20)

Suppose now that we form a spatially scaled filter f,
from f, where f,(x) = f(x/w). Recall from‘the end of Sec-
tion II that the multiple response criterion is unaffected by
spatial scaling. When we substitute f,, into (19) and (20)
we obtain for the performance of the scaled filter:

1
£(f,) = YwE(f) and A(f)) =AM @

The first of these equations is quite intuitive, and im-
plies that a filter with a broad impulse response will have
better signal-to-noise ratio than a narrow filter when ap-
plied to a step edge. The second is less obvious, and it
implies that a narrow filter will give better localization
than a broad one. What is surprising is that the changes
are inversely related, that is, both criteria either increase
or decrease by w. There is an uncertainty principle re-
lating the detection and localization performance of the

step edge detector. Through spatial scaling of f we can
trade off detection perfermance against localization, but
we cannot improve both simultaneously. This suggests
that a natural choice for the composite criterion would be
the product of (19) and (20), since this product would be
invariant under changes in scale.

0
S flx) dx
-w

/O]

Nroa[lrox

The solutions to the maximization of this expression
will be a class of functions all related by spatial scaling.
In fact this result is independent of the method of com-
bination of the criteria. To see this we assume that there
is a function f which gives the best localization A for a
particular L. That is, we find f such that

L) =«¢ (23)

Now suppose we seek a second function f,, which gives
the best possible localization while its signal-to-noise ratio
is fixed to a different value, i.c.,

L(f,) = ¢; while A(f),) is maximized. 24)

If we now define fi(x) in terms of f,,(x) as fi(x) = f.(xw)
where

LN A = (22)

and A(f") is maximized.

w = c3lc}

then the constraint on f,, in (24) translates to a constraint

on f; which is identical to (23), and (24) can be rewritten
as

Z(f) = ¢ and 1 A(f) is maximized  (25)
Jw

which has the solution f; = f. So if we find a single such
function f, we can obtain maximal localization for any
fixed signal-to-noise ratio by scaling f. The design prob-
lem for step edge detection has a single unique (up to spa-
tial scaling) solution regardless of the absolute values of
signal to noise ratio or localization.

The optimal filter is implicitly defined by (22), but we
must transform the problem slightly before we can apply
the calculus of variations. Specifically, we transform the
maximization of (22) into a constrained minimization that
involves only integral functionals. All but one of the in-
tegrals in (22) are set to undetermined constant values.
We then find the extreme value of the remaining integral
(since it will correspond to an extreme in the total expres-
sion) as a function of the undetermined constants. The
values of the constants are then chosen so as to maximize
the original expression, which is now a function only of
these constants. Given the constants, we can uniquely
specify the function f(x) which gives a maximum of the
composite criterion.

A second modification involves the limits of the inte-
grals. The two integrals in the denominator of (22) have
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limits at + W and — W, while the integral in the numer-
ator has one limit at 0 and the other at — W. Since the
function f should be antisymmetric, we can use the latter
limits for all integrals. The denominator integrals will
have half the value over this subrange that they would
have over the full range. Also, this enables the value of
f'(0) to be set as a boundary condition, rather than ex-
pressed as an integral of f”. If the integral to be mini-
mized shares the same limits as the constraint integrals,
it is possible to exploit the, isoperimetric constraint con-
dition (see [6, p. 216]). When this condition is fulfilled,
the constrained optimization can be reduced to an uncon-
strained optimization using Lagrange multipliers for the
constraint functionals. The problem of finding the maxi-
mum of (22) reduces to the minimization of the integral
in the denominator of the SNR term, subject to the con-
straint that the other integrals remain constant. By the
principle of reciprocity, we could have chosen to extrem-
ize any of the integrals while keeping the others constant,
and the solution should be the same.

We seck some function f chosen from a space of ad-
missible functions that minimizes the integral

0
S fix) dx (26)
-w
subject to
0 0
S fly dx = ¢ S fr@wde=c
-Ww -W
0
S_Wf"z(x) dr = 3 f1O) = ci @7)

The space of admissible functions in this case will be
the space of all continuous functions that satisfy certain
boundary conditions, namely that f(0) = O and f(— W)
= 0. These boundary conditions are necessary to ensure
that the integrals evaluated over finite limits accurately
represent the infinite convolution integrals. That is, if the
nth derivative of f appears in some integral, the function
must be continuous in its (n — 1)st derivative over the
range (— o, + o). This implies that the values of f and
its first (n — 1) derivatives must be zero at the limits of
integration, since they are zero outside this range.

The functional to be minimized is of the form | Z F(x, f,
f', f and we have a series of constraints that can be
written in the form {4 G;(x, f, f', f") = ¢;. Since the con-
straints are isoperimetric, i.e., they share the same limits
of integration as the integral being minimized, we can
form a composite functional using Lagrange multipliers
[6]. The functional is a linear combination of the func-
tionals that appear in the expression to be minimized and
in the constraints. Finding a solution to the unconstrained
maximization of ¥(x, f, f', f") is equivalent to finding the
solution to the constrained problem. The composite func-
tional is

Y, f, f, f) = F&x, f, ' ) + MGG f F D
+ MG, f ) +

Substituting,
Y, £ 5N =+ Mf?+ Maf? + Mf (28)

It may be seen from the form of this equation that the
choice of which integral is extremized and which are con-
straints is arbitrary, the solution will be the same. This is
an example of the reciprocity that was mentioned earlier,
The choice of an integral from the denominator is simply
convenient since the standard form of variational problem
is a minimization problem. The Euler equation that cor-
responds to the functional ¥ is

d d?
V,— — V¥, + —5 ¥ =0
o oaxe dx? f
where ¥, denotes the partial derivative of ¥ with respect
to f, etc. We substitute for ¥ from (28) in the Euler equa-
tion giving:
2f(x) — 2N ") + 2N f"(x) + A3 = 0. (30)

The solution of this differential equation is the sum of

a constant and a set of four exponentials of the form e™

where v derives from the solution of the corresponding
homogeneous differential equation. Now vy must satisfy

(29)

2 =220+ 2N =0

SO
DY VA2 -4,
=— 4 ——— (31)
T T, 2N,

This equation may have roots that are purely imaginary,
purely real, or complex depending on the values of A, and
\,. From the composite functional ¥ we can infer that X\,
is positive (since the integral of f "2 is to be minimized)
but it is not clear what the sign or magnitude of A | should
be. The Euler equation supplies a necessary condition for
the existence of a minimum, but it is not a sufficient con-
dition. By formulating such a condition we can resolve
the ambiguity in the value of \;. To do this we must con-
sider the second variation of the functional. Let

X

JIf]1 = S Y, f, f', f") dx.

X0

Then by Taylor’s theorem (see also [6, p. 214]),

JIf + egl = JIf] + eJilf, 8 + 3> Dol f + pg, &)

where p is some number between 0 and €, and g is chosen
from the space of admissible functions, and where

X1

Jilf, 8l = S

X0

‘Pfg + q’f’g, + q’fng" dx

Xt

Llf gl = S Vpg® + ¥ppg'? + Vnpg"?
X0

+ 2‘I’ff'gg’ + 2‘I’f'f"g’g” + 2\I'ﬁrng" dx.
' (32)




(33)

Using the fact that g is an admissible function and there-
fore vanishes at the integration limits, we transform the
above using integration by parts to

x1
2 S g2 — Nigg" + Ng"tdx =2 0

X0

which can be written as

o A 2 x%)
2 _Zlan) 4 (N, =) o2 ax = 0.
[ (- 5er) + (%)

The integral is guaranteed to be positive if the expression
being integrated is positive for all x, so if

4N, > \?

then the integral will be positive for all x and for arbitrary
g, and the extremum will certainly be a minimum. If we
refer back to (31) we find that this condition is precisely
that which gives complex roots for v, so we have both
guaranteed the existence of a minimum and resolved a
possible ambiguity in the form of the solution. We can
now proceed with the derivation and assume four complex
roots of the form v = ta + iw with @, w real. Now 2
= a’ - w? + 2iaw and equating real and imaginary parts
with (31) we obtain '

a? — 0wl = .22\)%2 and 4a’w? = E)\Z)\;%)\% (34)
| The general solution in the range [— W, 0] may now be
written
S&) = a;e* sin wx + a,e** cos wx + aze
* sin wx + ase " cos wx + c. (35)
This function is subject to the boundary conditions
fO=0 f-W)=0 fO=s [f(-W)=0

where s is an unknown constant equal to the slope of the
function f at the origin. Since f(x) is asymmetric, we can
extend the above definition to the ra ge [—W, W] using
f(=x) = —f(x). The four boundary conditions enable us
to solve for the quantities a, through a, in terms of the
unknown constants «, w, ¢, and s. The boundary condi-
tions may be rewritten
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e a1 o e med wsing ntcareion by oo mrare=t
w‘:rdc\e?l?ttlg;e?;{f fsatisfies the Euler equation. We are”sin w + aye® cos  + aze™ sin w
pow define the second variation 62J as +ae®cosw+c=0
52J=§J2[f, gl. 4w+ o + a0 — aa = §
The necessary condition for:ami‘nimum is62/ = 0. We a;e®(o sin w + w cos w) + aye*(a cos w
compute the second partial derivatives of ¥ from (28) and — wsin @) + @e*(—a sin @ + © cos w)
we get xi s + ase”(—a cos w — wsin w) = 0. (36)
hif+8 = L 26" + 208" + g dx 2 0. These equations are linear in the four unknowns a,, a,,

as, a4 and when solved they yield

a; = c(a(B — @) sin 20 — aw cos 2w + (—2w? sinh o
+ 2a%e™) sin w + 2qw sinh o cos
+ we ¥ (a + B) — Bu)/4(w? sinh? & — o sin? w)

c(a(B ~ a) cos 2w + aw sin 2w — 2aw cosh «

a
* sin @ — 2w? sinh « cos @ + 2w?e™ sinh o
+ a(a — B))/4(w?® sinh? & — o sin® w)

c(—a(B + @) sin 2w + aw cos 2w + (2w? sinh «

as
+ 2a%®) sin w + 2aqw sinh « cos w
+ we® (B ~ ) — Bw)/4(w? sinh® @ — «? sin? w)

c(—a(B + ) cos 2w — aw sin 2w + 2aw cosh o

ay
* sin w + 2w? sinh @ cos @ — 2w2e® sinh o

+ ala — B))/4(w’® sinh® o — o? sin® w) (37)

where 8 is the slope s at the origin divided by the constant
¢. On inspection of these expressions we can see that as
can be obtained from a,; by replacing « by —a, and sim-
ilarly for a, from q,.

The function fis now parametrized in terms of the con-
stants a, w, 3, and ¢. We have still to find the values of
these parameters which maximize the quotient of integrals
that forms our composite criterion. To do this we first
express each of the integrals in terms of the constants.
Since these integrals are very long and uninteresting, they
are not given here but may be found in [4]. We have re-
duced the problem of optimizing over an infinite-dimen-
sional space of functions to a nonlinear optimization in
three variables @, w, and B (not surprisingly, the com-
bined criterion does not depend on c). Unfortunately the
resulting criterion, which must still satisfy the multiple
response constraint, is probably too complex to be solved
analytically, and numerical methods must be used to pro-
vide the final solution.

The shape of f will depend on the multiple response
constraint, i.e., it will depend on how far apart we force
the adjacent responses. Fig. 5 shows the operators that
result from particular choices of this distance. Recall that
there was no single best function for arbitrary w, but a
class of functions which were obtained by scaling a pro-
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totype function by w. We will want to force the responses
further apart as the signal-to-noise ratio in the image is
lowered, but it is not clear what the value of signal-to-
noise ratio will be for a single operator. In the context in
which this operator is used, several operator widths are
available, and a decision procedure is applied to select the
smallest operator that has an output signal-to-noise ratio
above a fixed threshold. With this arrangement the oper-
ators will spend much of the time operating close to their
output I thresholds. We try to choose a spacing for which
the probability of a multiple response error is comparable
to the probability of an error due to thresholding.

A rough estimate for the probability of a spurious max-
imum in the neighborhood of the true maximum can be
formed as follows. If we look at the response of f to an
ideal step we find that its second derivative has magnitude
| Af'(0) | at x = 0. There will be only one maximum near
the center of the edge if |Af'(0) | is greater than the sec-
ond derivative of the response to noise only. This latter
quantity, denoted s,, is a Gaussian random variable with
standard deviation

+W 12
ngo, = no<§_wf”2(x) dx) .

The probability p,, that the noise slope s, exceeds Af’ (0)
is given in terms of the normal distribution function ¢

o =1~ ®<Alf’(0)l)'

nyo;

(38)

We can choose a value for this probability as an ac-
ceptable error rate and this will determine the ratio of f(0)
to o,. We can relate the probability of a multiple response
P to the probability of falsely marking an edge Pr which

is
A
Pr=1- ‘PC—OE)

by setting p,, = Py This is a natural choice since it makes
a detection error or a multiple response error equally
likely. Then from (38) and (39) we have

If O] _

T

(39

L (40)

In practice it was impossible to find filters which sat-
isfied this constraint, so instead we search for a filter sat-
isfying

SOl _

O

. (41)

where r is as close as possible to 1. The performance in-
dexes and parameter values for several filters are given in
Fig. 4. The g, coefficients for all these filters can be found
from (37), by fixing c to, say, ¢ = 1. Unfortunately, the
largest value of r that could be obtained using the con-
strained numerical optimization was about 0.576 for filter
number 6 in the table. In our implementation, we have

Filter Parameters

Ny Zp. | ZA r @ w i)

11 0.15 [ 4.21 [ 0.215 | 24.59550 0.12250 | 63.97566 |
2 0.3 12870313 ] 12.47120 0.38284 | 31.26860
3 0.512.13 (0417 7.85869 2.62856 | 18.28800
4 0.8 | 1.57 [ 0.515 | 5.06500 2.56770 | 11.06100 |
5 1.0 | 1.33 | 0.561 3.45580 | 0.07161 780684
6| 121.12]0.576 | 2.05220 | 1.56030 | 2.9154G
7] 14]0.75 | 0.484 | 0.00297 | 3.50350 | 7.47700 |

Fig. 4. Filter parameters and performance measures for the filters ilfys.
trated in Fig. 5.

approximated this filter using the first derivative of ,
Gaussian as described in the next section.

The first derivative of Gaussian operator, or even filter
6 itself, should not be taken as the final word in edge
detection filters, even with respect to the criteria we have
used. If we are willing to tolerate a slight reduction in
multiple response performance r, we can obtain signifi-
cant improvements in the other two criteria. For example,
filters 4 and 5 both have significantly better LA product
than filter 6, and only slightly lower r. From Fig. 5 we
can see that these filters have steeper slope at the origin,
suggesting that the performance gain is mostly in locali-
zation, although this has not been verified experimentally.
A thorough empirical comparison of these other operators
remains to be done, and the theory in this case is unclear
on how best to make the tradeoff.

V. AN EFFICIENT APPROXIMATION

The operator derived in the last section as filter number
6, and illustrated in Fig. 6, can be approximated by the
first derivative of a Gaussian G'(x), where

2
G(x) = exp (— 5%)

The reason for doing this is that there are very efficient
Ways to compute the two-dimensional extension of the fil-
ter if it can be represented as some derivative of a Gauss-
ian. This is described in detail elsewhere [4], but for the
present we will compare the theoretical performance of a
first derivative of a Gaussian filter to the optimal operator.
The impulse response of the first derivative filter is

2
1) = = S exp (-i—;)

and the terms in the performance criteria have the values

42)

1
L] = o
j‘o _ 1 s+m ) dx _ \/1—‘_
_fwax = fwar =
S*‘” 20y ge < 3VT S*“ vy g < VT
LTOE =T | e = 80°
(43)

The overall performance index for this operator is
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Fig. 5. Optimal step edge operators for various values of x,,,. From top
to bottom, they are x,,, = 0.15, 0.3, 0.5, 0.8, 1.0, 1.2, 1.4.

@)

(b)

Fig. 6. (a) The optimal step edge operator. (b) The first derivative of a

Gaussian.
3 The performance of the first derivative of Gaussian op-
TA= |— = 0.92 (44) erator above is worse than the optimal operator by about
3 20 percent and its multiple response measure r, is worse
while the r value is, from (41), by abou.t 10 percent. I‘t would' probably be _diﬁicult to de-
: tect a difference of this magnitude by looking at the per-
4 formance of the two operators on real images, and be-
r= |— =~ 0.51. cause the first derivative of Gaussian operator can be

15 computed with much less effort in two dimensions, it has



194

Image Partitioning and Perceptual Organization

been used exclusively in experiments. The impulse re-
sponses of the two operators can be compared in Fig. 6.

A close approximation of the first derivative of Gauss-
ian operator was suggested by Macleod [16] for step edge
detection. Macleod’s operator is a difference of two dis-
placed two-dimensional Gaussians. It was evaluated in
Fram and Deutsch [7] and compared very favorably with
several other schemes considered in that paper. There are
also strong links with the Laplacian of Gaussian operator
suggested by Marr and Hildreth [18]. In fact, a one-di-
mensional Marr-Hildreth edge detector is almost identi-
cal with the operator we have derived because maxima in
the output of a first derivative operator will correspond to
zero-crossings in the Laplacian operator as used by Marr
and Hildreth. In two dimensions however, the directional
properties of our detector enhance its detection and local-
ization performance compared to the Laplacian. Another
important difference is that the amplitude of the response
at a maximum provides a good estimate of edge strength,
because the SNR criterion is the ratio of this response to
the noise response. The Marr-Hildreth operator does not
use any form of thresholding, but an adaptive threshold-
ing scheme can be used to advantage with our first deriv-
ative operator. In the next section we describe such a
scheme, which includes noise estimation and a novel
method for thresholding edge points along contours.

We have derived our optimal operator to deal with
known image features in Gaussian noise. Edge detection
between textured regions is another important problem.

This is straightforward if the texture can be modelled as

the response of some filter 7 (x) to Gaussian noise. We can
then treat the texture as a noise signal, and the response
of the filter f(x) to the texture is the same as the response
of the filter (f * r) (x) to Gaussian noise. Making this
replacement in each integral in the performance criteria
that computes a noise response gives us the texture edge
design problem. The generalization to other types of tex-
ture is not as easy, and for good discrimination between
known texture types, a better approach would involve a
Markov image model as in [5].

V1. Noise ESTIMATION AND THRESHOLDING

To estimate noise from an operator output, we need to
be able to separate its response to noise from the response
due to step edges. Since the performance of the system
will be critically dependent on the accuracy of this esti-
mate, it should also be formulated as an optimization.
Wiener filtering is a method for optimally estimating one
component of a two-component signal, and can be used
to advantage in this application. It requires knowledge of
the autocorrelation functions of the two components and
of the combined signal. Once the noise component has
been optimally separated, we form a global histogram of
noise amplitude, and estimate the noise strength from
some fixed percentile of the noise signal.

Let g,(x) be the signal we are trying to detect (in this
case the noise output), and g,(x) be some disturbance
(paradoxically this will be the edge response of our filter),

——

then denote the autocorrelation function of g, as R, (r)
and that of g, as R,;(7), and their cross-correlation a5
R,,(7), where the correlation of two real functions is de-
fined as follows:

+

R = | a0 g+ 7 de

We assume in this case that the signal and disturbance
are uncorrelated, so R, (7) = 0. The optimal filter is K (x),
which is implicitly defined as follows [30]:

4+

Ru(m) = S_w Ry(1 — x) + Rpn(7 — x)) K(x) dx.

Since the autocorrelation of the output of a filter in re-

sponse to white noise is equal to the autocorrelation of its
impulse response, we have

2 2
X X
R”(x) = k3 (‘2‘0'2' - 1> €Xp <—4-_0'2>

If g, is the response of the operator derived in (42) to a
step edge then we will have g, (x) = k exp (— x/2 0?) and

x2
Rj; (x) = ky exp ( 402>.

In the case where the amplitude of the edge is large
compared to the noise, R,; + R, is approximately a
Gaussian and R, is the second derivative of a Gaussian
of the same ¢. Then the optimal form of K is the second
derivative of an impulse function.

The filter K above is convolved with the output of the
edge detection operator and the result is squared. The next
step is the estimation of the mean-squared noise from the
local values. Here there are several possibilities. The sim-
plest is to average the squared values over some neigh-
borhood, either using a moving average filter or by taking
an average over the entire image. Unfortunately, experi-
ence has shown that the filter X is very sensitive to step
edges, and that as a consequence the noise estimate from
any form of averaging is heavily colored by the density
and strength of edges.

In order to gain better separation between signal and
noise we can make use of the fact that the amplitude dis-
tribution of the filter response tends to be different for
edges and noise. By our model, the noise response should
have a Gaussian distribution, while the step edge response
will be composed of large values occurring very infre-
quently. If we take a histogram of the filter values, we
should find that the positions of the low percentiles (say
less than 80 percent) will be determined mainly the noise
energy, and that they are therefore useful estimators for
noise. A global histogram estimate is actually used in the
current implementation of the algorithm.

Even with noise estimation, the edge detector will be
susceptible to streaking if it uses only a single threshold.
Streaking is the breaking up of an edge contour caused by
the operator output fluctuating above and below the
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Fig. 7. (a) Parts image, 576 by 454 pixels. (b) Image thesholded at T,. (c)
Image thresholded at 2 T,. (d) Image thresholded with hysteresis using
both the thresholds in (a) and (b).

threshold along the length of the contour. Suppose we
have a single threshold set at 7}, and that there is an edge
in the image such that the response of the operator has
mean value T;. There will be some fluctuation of the out-
put amplitude due to noise, even if the noise is very slight.
We expect the contour to be above threshold only about
half the time. This leads to a broken edge contour. While
this is a pathological case, streaking is a very common
problem with edge detectors that employ thresholding. It
is very difficult to set a threshold so that there is small
probability of marking noise edges while retaining high
sensitivity. An example of the effect of streaking is given
in Fig. 7.

One possible solution to this problem, used by Pentland
[22] with Marr-Hildreth zero-crossings, is to average the
edge strength of a contour over part of its length. If the
average is above the threshold, the entire segment is
marked. If the average is below threshold, no part of the
contour appears in the output. The contour is segmented
by breaking it at maxima in curvature. This segmentation
is necessary in the case of zero-crossings since the zero-
crossings always form closed contours, which obviously
do not always correspond to contours in the image.

In the current algorithm, no attempt is made to preseg-
ment contours. Instead the thresholding is done with hys-
teresis. If any part of a contour is above a high threshold,
those points are immediately output, as is the entire con-
nected segment of contour which contains the points and
which lies above a low threshold. The probability of
streaking is greatly reduced because for a contour to be
broken it must now fluctuate above the high threshold and
below the low threshold. Also the probability of isolated
false edge points is reduced because the strength of such
points must be above a higher threshold. The ratio of the
high to low threshold in the implementation is in the range
two or three to one.

VII. Two orR MoORE DIMENSIONS

In one dimension we can characterize the position of a
step edge in space with one position coordinate. In two
dimensions an edge also has an orientation. In this section
we will use the term ‘‘edge direction’’ to mean the direc-
tion of the tangent to the contour that the edge defines in
two dimensions. Suppose we wish to detect edges of a
particular orientation. We create a two-dimensional mask
for this orientation by convolving a linear edge detection
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function aligned normal to the edge direction with a pro-
jection function parallel to the edge direction. A substan-
tial savings in computational effort is possible if the pro-
jection function is a Gaussian with the same o as the (first
derivative of the) Gaussian used as the detection function.
It is possible to create such masks by convolving the im-
age with a symmetric two-dimensional Gaussian and then
differentiating normal to the edge direction. In fact we do
not have to do this in every direction because the slope of
a smooth surface in any direction can be determined ex-
actly from its slope in two directions. This form of direc-
tional operator, while simple and inexpensive to compute,
forms the heart of the more elaborate detector which will
be described in the next few sections.

Suppose we wish to convolve the image with an oper-
ator G, which is the first derivative of a two-dimensional
Gaussian G in some direction n, i.e.,

x*+y°
G = exp <~T‘2——>

g
G,==— =n"VG.
"= n " G

and

(45)

Ideally, n should be oriented normal to the direction of
an edge to be detected, and although this direction is not
known a priori, we can form a good estimate of it from
the smoothed gradient direction

_ V(G *D

"TIVG D]
where * denotes convolution. This turns out to be a very
good estimator for edge normal direction for steps, since
a smoothed step has strong gradient normal to the edge.
It is exact for straight line edges in the absence of noise,
and the Gaussian smoothing keeps it relatively insensitive
to noise.

An edge point is defined to be a local maximum (in the
direction n) of the operator G, applied to the image I. At
a local maximum, we have

d
— =0
anG,,*l

(46)

and substituting for G, from (45) and associating Gauss-
ian convolution, the above becomes
62
— G*I1=0. 47
on’ @7
At such an edge point, the edge strength will be the mag-
nitude of

|Gy # 1| = |V(G*D|. (48)

Because of the associativity of convolution, we can first
convolve with a symmetric Gaussian G and then compute
directional second derivative zeros to locate edges (47),
and use the magnitude of (48) to estimate edge strength.
This is equivalent to detecting and locating the edge using

the directional operator G,, but we need not know the
direction n before convolution.

The form of nonlinear second derivative operator in (47)
has also been used by Torre and Poggio [28] and by Har-
alick [10]. It also appears in Prewitt [23] in the context
of edge enhancement. A rather different two-dimensional
extension is proposed by Spacek [26] who uses one-di-
mensional filters aligned normal to the edge direction but
without extending them along the edge direction. Spacek
starts with a one-dimensional formulation which maxi-
mizes the product of the three performance criteria de-
fined in Section II, and leads to a step edge operator which
differs slightly from the one we derived in Section IV,
Gennert [8] addresses the two-dimensional edge detector
problem directly, and applies a set of directional first de-
rivative operators at each point in the image. The opera-
tors have limited extent along the edge direction and pro-
duce good results at sharp changes in edge orientation and
corners.

The operztor (47) actually locates either maxima or
minima by locating the zero-crossings in the second de-
rivative in the edge direction. In principle it could be used
to implement an edge detector in an arbitrary number of
dimensions, by first convolving the image with a sym-
metric n-dimensional Gaussian. The convolution with an
n-dimensional Gaussian is highly efficient because the
Gaussian is separable into n one-dimensional filters.

But there are other more pressing reasons for using a
smooth projection function such as a Gaussian. When we
apply a linear operator to a two-dimensional image, we
form at every point in the output a weighted sum of some
of the input values. For the edge detector described here,
this sum will be a difference between local averages on
different sides of the edge. This output, before nonmaxi-
mum suppression, represents a kind of moving average of
the image. Ideally we would like to use an infinite pro-
jection function, but real edges are of limited extent. It is
therefore necessary to window the projection function [9].
If the window function is abruptly truncated, e.g., if it is
rectangular, the filtered image will not be smooth because
of the very high bandwidth of this window. This effect is
related to the Gibbs phenomenon in Fourier theory which
occurs when a signal is transformed over a finite window.
When nonmaximum suppression is applied to this rough
signal we find that edge contours tend to ‘“‘wander’’ or
that in severe cases they are not even continuous.

The solution is to use a smooth window function. In
statistics, the Hamming and Hanning windows are typi-
cally used for moving averages. The Gaussian is a rea-
sonable approximation to both of these, and it certainly
has very low bandwidth for a given spatial width. (The
Gaussian is the unique function with minimal product of
bandwidth and frequency.) The effect of the window
function becomes very marked for large operator sizes and
it is probably the biggest single reason why operators with
large support were not practical until the work of Marr
and Hildreth on the Laplacian of Gaussian.

It is worthwhile here to compare the performance of
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kind of directional second derivative operator with
Laplacian. First we note that the two-dimensional La-
Cian can be decomposed into components of second
Avative in tWO arbitrary orthogonal directions. If we
» to take one of the derivatives in the direction of
jpal gradient, we find that the .operator output will
?ginﬂ_ one contribution that is essentially the same as the
5 tor described above, and also a contribution that is
oli along the edge direction. This second component
ntributes nothing to localization or detection (the sur-
face is roughly constant in this direction), but increases
noise.
m‘;:;:g:tscctions we will describe an edge detector which
jncorporates operators of varying orientation and aspect
patio, but these are a superset of the opqratoFs used in the
simple detector described above. In typical images, most
of the edges are marked by the operators of the smallest
. width, and most of these by nonelongated operators. The
simple detector performs well enough in these cases, and
"% g8 detector complexity increases, performance gains tend
" to diminish. However, as we shall see in the following
gections, there are cases when larger or more directional
operators should be used, and that they do improve per-
formance when they are applicable. The key to making
such a complicated detector produce a coherent output is
to design effective decision procedures for choosing be-
tween operator outputs at each point in the image.

VIII. TuE NEeED FOR MuLTIPLE WIDTHS

Having determined the optimal shape for the operator,
we now face the problem of choosing the width of the
operator so as to give the best detection/localization
tradeofT in a particular application. In general the signal-
to-noise ratio will be different for each edge within an
image, and so it will be necessary to incorporate several
widths of operator in the scheme. The decision as to which
operator to use must be made dynamically by the algo-
rithm and this requires a local estimate of the noise energy
in the region surrounding the candidate edge. Once the
noise energy is known, the signal-to-noise ratios of each
of the operators will be known. If we then use a model of
the probability distribution of the noise, we can effec-
tively calculate the probability of a candidate edge being
a false edge (for a given edge, this probability will be
different for different operator widths). :

If we assume that the a priori penalty associated with
a falsely detected edge is independent of the edge strength,
it is appropriate to threshold the detector outputs on prob-
ability of error rather than on magnitude of response. Once
the probability threshold is set, the minimum acceptable
signal-to-noise ratio is determined. However, there may
be several operators with signal-to-noise ratios above the
threshold, and in this case the smallest operator should be
chosen, since it gives the best localization. We can afford
to be conservative in the setting of the threshold since
edges missed by the smallest operators may be picked up
by the larger ones. Effectively the global tradeoff between
error rate and localization remains, since choosing a high

signal-to-noise ratio threshold leads to a lower error rate,
but will tend to give poorer localization since fewer edges
will be recorded from the smallér operators.

In summary then, the first heuristic for choosing be-
tween operator outputs is that small operator widths
should be used whenever they have sufficient L. This is
similar to the selection criterion proposed by Marr and
Hildreth [18] for choosing between different Laplacian of
Gaussian channels. In their case the argument was based
on the observation that the smaller channels have higher
resolution, i.e., there is less possibility of interference
from neighboring edges. That argument is also very rel-
evant in the present context, as to date there has been no
consideration of the possibility of more than one edge in
a given operator support. Interestingly, Rosenfeld and
Thurston [25] proposed exactly the opposite criterion in
the choice of operator for edge detection in texture. The
argument given was that the larger operators give better
averaging and therefore (presumably) better signal-to-
noise ratios.

Taking the fine-to-coarse heuristic as a starting point,
we need to form a local decision procedure that will en-
able us to decide whether to mark one or more edges when
several operators in a neighborhood are responding. If the
operator with the smallest width responds to an edge and
if it has a signal-to-noise ratio above the threshold, we
should immediately mark an edge at that point. We now
face the problem that there will almost certainly be edges
marked by the larger operators, but that these edges will
probably not be exactly coincident with the first edge. A
possible answer to this would be to suppress the outputs
of all nearby operators. This has the undesirable effect of
preventing the large channels for responding to ‘‘fuzzy’’
edges that are superimposed on the sharp edge.

Instead we use a ‘‘feature synthesis’’ approach. We be-
gin by marking all the edges from the smallest operators.
From these edges, we synthesize the large operator out-
puts than would have been produced if these were the only
edges in the image. We then compare the actual operator
outputs to the synthetic outputs. We mark additional edges
only if the large operator has significantly greater re-
sponse than what we would predict from the synthetic out-
put. The simplest way to produce the synthetic outputs is
to take the edges marked by a small operator in a partic-
ular direction, and convolve with a Gaussian normal to
the edge direction for this operator. The o of this Gaussian
should be the same as the o of the large channel detection
filter.

This procedure can be applied repeatedly to first mark
the edges from the second smallest scale that were not
marked by at the first, and then to find the edges from the
third scale that were not marked by either of the first two,
etc. Thus we build up a cumulative edge map by adding
those edges at each scale that were not marked by smaller
scales. It turns out that in many cases the majority of edges
are picked up by the smallest channel, and the later chan-
nels mark mostly shadow and shading edges, or edges be-
tween textured regions.
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Fig. 8. (a) Edges from parts image at ¢ = 1.0. (b) Edges at ¢ = 2.0. (c)
Superposition of the edges. (d) Edges combined using feature synthesis.

Some examples of feature synthesis applied to some
sample images are shown in Figs. 8 and 9. Notice that
most of the edges in Fig. 8 are marked by the smaller
scale operator, and only a few additional edges, mostly
shadows, are picked up by the coarser scale. However
when the two sets of edges are superimposed, we notice
that in many cases the responses of the two ‘operators to
the same edge are not spatially coincident. When feature
synthesis is applied we find that redundant responses of
the larger operator are eliminated leading to a sharp edge
map.

By contrast, in Fig. 9 the edges marked by the two op-
erators are essentially independent, and direct superposi-
tion of the edges gives a useful edge map. When we apply
feature synthesis to these sets of edges we find that most
of the edges at the coarser scale remain. Both Figs. 8 and
9 were produced by the edge detector with exactly the
same set of parameters (other than operator size), and they
were chosen to represent opposing extremes of image
content across scale.

IX. THE NEED FOR DIRECTIONAL OPERATORS

So far we have assumed that the projection function is
a Gaussian with the same o as the Gaussian used for the

detection function. In fact both the detection and locali-
zation of the operator improve as the length of the projec-
tion function increases. We now prove this for the oper-
ator signal-to-noise ratio. The proof for localization is
similar. We will consider a step edge in the x direction
which passes through the origin. This edge can be repre-
sented by the equation

I(x, y) = Au_,(y)

where u_, is the unit step function, and A is the amplitude
of the edge as before. Suppose that there is additive
Gaussian noise of mean squared value n, per unit area.
If we convolve this signal with a filter whose impluse re-
sponse is f(x, y), then the response to the edge (at the
origin) is

0 +0o
S_ S_ f@x, ) dx dy.
The root mean squared response to the noise only is

4o +o 12
ngo (S g . fix, y) dx dy)

The signal-to-noise ratio is the quotient of these two

R

AR



A Computational Approach

199

2
(IJ

)

EXY>
Bond

AL
290y

ST0 0%

20

£ L5

ggﬁ% ég:g; e

ng:’-: ‘:"\t‘v\i%i i}.ﬁ’
e FERINIOG:
S RdoE 3o E oo 53SES

(e)

Fig. 9. (a) Handywipe image 576 by 454 pixels. (b) Edges from handy-
wipe image at ¢ = 1.0. (c) ¢ = 5.0. (d) Superposition of the edges. (e)
Edges combined using feature synthesis.
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Fig. 10. Directional step edge mask. (a) Cross section parallel to the edge
direction. (b) Cross section normal to edge direction. (c) Two-dimen-
sional impulse responses of several masks.

integrals, and will be denoted by £. We have already seen
what happens if we scale the function normal to the edge
(21). We now do the same to the projection function by

replacing f(x, y) by fi(x, y) = f(x, (y/1)). The integrals
become

Sim Si:f<x, %) dx dy

0 + o
= S S flx, y)l dx dy,

- J-oo

([ 1 (e3) a0

+o pt+oo 12
= ng (S S fix, y)ldx d)’l) (49)

— oo

And the ratio of the two is now JIE. The localization
A also improves as V1. 1t is clearly desirable that we use
as large a projection function as possible. Therc are prac-
tical limitations on this however, in particular edges in an
image are of limited extent, and few are perfectly linear.
However, most edges continue for some distance, in fact
much further than the 3 or 4 pixel supports of most edge
operators. Even curved edges can be approximated by lin-
ear segments at a small enough scale. Considering the ad-
vantages, it is obviously preferable to use directional op-
erators whenever they are applicable. The only proviso is
that the detection scheme must ensure that they are used
only when the image fits a linear edge model.

The present algorithm tests for applicability of each di-

rectional mask by forming a goodness-of-fit estimate. It
does this at the same time as the mask itself is computed.
An efficient way of forming Jong directional masks is to
sample the output of nonelongated masks with the same
direction. This output is sampled at regular intervals in a
line parallel to the edge direction. If the samples are close
together (less than 2¢ apart), the resulting mask is essen-
tially flat over most of its range in the edge direction and
falls smoothly off to zero at its ends. Two cross sections
of such a mask are shown in Fig. 10. In this diagram (as
in the present implementation) there are five samples over
the operator support. .
Simultaneously with the computation of the mask, it is
possible to establish goodness of fit by a simple squared-
error measure. The mask is computed by summing some
number of circular mask outputs (say 5) in a line. If the
mask lies over a step edge in its preferred direction, these
5 values will be roughly the same. If the edge is curved
or not aligned with the mask direction, the values will
vary. We use the variance of these values as an estimate
of the goodness of fit of the actual edge to an ideal step
model. We then suppress the output of a directional mask
if its variance is greater than some fraction of the squared
output. Where no directional operator has sufficient good-
ness of fit at a point, the algorithm will use the output of
the nonelongated operator described in Section VII. This
simple goodness-of-fit measure is sufficient to eliminate
the problems that traditionally plague directional opera-
tors, such as false responses to highly curved edges and
extension of edges beyond corners; see Hildreth [12].
This particular form of projection function, that is a
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function with constant value over some range which de-
cays to zero at each end with two roughly half-Gaussians,
is very similar to a commonly used extension of the Han-
ning window. This latter function is flat for some distance
and decays to zero at each end with two half-cosine bells
[2]. We can therefore expect our function to have good
pmpemes as a moving average estimator, which as we
saw in Section VII, is an important role fulfilled by the
projection function.

All that remains to be done in the design of directional
operators is the specification of the number of directions,
or equivalently the angle between two adjacent directions.
To determine the latter, we need to determine the angular
selectivity of a directional operator as a function of the
angle 0 between the edge direction and the preferred di-
rection of the operator. Assume that we form the operator
by taking an odd number 2N + 1 of samples. Let the
number of a sample be n where n is in the range —N - -
+N. Recall that the directional operator is formed by con-
volving with a symmetric Gaussian, differentiating nor-
mal to the preferred edge direction of the operator, and
then sampling along the preferred direction. The differ-
entiated surface will be a ridge which makes an angle 0
to the preferred edge direction. Its height will vary as cos
#, and the distance of the nth sample from the center of
the ridge will be nd sin § where d is the distance between
samples. The normalized output will be

d sin 9)’
p(—("%)—ﬂ (50)

If there are m operator directions, then the angle be-
tween the preferred directions of two adjacent operators
will be 180/m. The worst case angle between the edge and
the nearest preferred operator direction is therefore 90/m.
In the current implementation the value of d/¢ is about
1.4 and there are 6 operator directions. The worst case for
0 is 15 degrees, and for this case the operator output will
fall to about 85 percent of its maximum value. Directional
operators very much like the ones we have derived were
suggested by Marr [17], but were discarded in favor of
the Laplacian of Gaussian [18]. In part this was because
the computation of several directional operators at each
point in the image was thought to require an excessive
amount of computation. In fact the sampling scheme de-
scribed above requires only five multiplications per op-
erator. An example of edge detection using five-point di-
rectional operators is given in Fig. 11.

N
2 ex

n=-N

0.00) = cos 0 [

2N + 1

X. CoNCLUSIONS

We have described a procedure for the design of edge
detectors for arbitrary edge profiles. The design was based
on the specification of detection and localization criteria
in a mathematical form. It was necessary to augment the
original two criteria with a multiple response measure in
order to fully capture the intuition of good detection. A
mathematical form for the criteria was presented, and nu-
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Fig. 11. (a) Dalek image 576 by 454 pixels. (b) Edges found using circular
operator. (¢) Directional edges (6 mask orientations).

merical optimization was used to find optimal operators
for roof and ridge edges. The analysis was then restricted
to consideration of optimal operators for step edges. The
result was a class of operators related by spatial scaling.
There was a direct tradeoff in detection performance ver-
sus localization, and this was determined by the spatial
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width. The impulse response of the optimal step edge op-
erator was shown to approximate the first derivative of a
Gaussian.

A detector was proposed which used adaptive thresh-
olding with hysteresis to eliminate streaking of edge con-
tours. The thresholds were set according to the amount of
noise in the image, as determined by a noise estimation
scheme. This detector made use of several operator widths
to cope with varying image signal-to-noise ratios, and op-
erator outputs were combined using a method called fea-
ture synthesis, where the responses of the smaller opera-
tors were used to predict the large operator responses. If
the actual large operator outputs differ significantly from
the predicted values, new edge points are marked. It is
therefore possible to describe edges that occur at different
scales, even if they are spatially coincident.

In two dimensions it was shown that marking edge
points at maxima of gradient magnitude in the gradient
direction is equivalent to finding zero-crossings of a cer-
tain nonlinear differential operator. It was shown.that
when edge contours are locally straight, highly directional
operators will give better results than operators with a cir-
cular support. A method was proposed for. the efficient
generation of highly directional masks at several orienta-
tions, and their integration into a single description.

Among the possible extensions of the work, the most
interesting unsolved problem is the integration of different
edge detector outputs into a single description. A scheme
which combined the edge and ridge detector outputs using
feature synthesis was implemented, but the results were
inconclusive. The problem is much more complicated here
than for edge operators at different scales because there is
no clear reason to prefer one edge type over another. Each
edge set must be synthesized from the other, without a
bias caused by overestimation in one direction.

The criteria we have presented can be used with slight
modification for the design of other kinds of operator. For
example, we may wish to design detectors for nonlinear
two-dimensional features (such as comers). In this case
the detection criterion would be a two-dimensional inte-
gral similar to (3), while a plausible localization criterion
would need to take into account the variation of the edge
position in both the x and y directions, and would not di-
rectly generalize from (9). There is a natural generaliza-
tion to the detection of higher-dimensional edges, such as
occur at material boundaries in tomographic scans. As was
pointed out in Section VII, (47) can be used to find edges
in images of arbitrary dimension, and the algorithm re-
mains efficient in higher dimensions because n-dimen-
sional Gaussian convolution can be broken down into n
linear convolutions.
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