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Abstract 
This paper describes a probabilistic multiple-hypothesis 

framework for tracking highly articulated objects. In this 
framework, the probability density of the tracker state is 
represented as a set of modes with piecewise Gaussians 
characterizing the neighborhood around these modes. The 
temporal evolution of the probability density is achieved 
through sampling from the prior distribution, followed 
by local optimization of the sample positions to obtain 
updated modes. This method of generating hypotheses 
from state-space search does not require the use of dis- 
crete features unlike classical multiple-hypothesis track- 
ing. The parametric form of the model is suited for high- 
dimensional state-spaces which cannot be efficiently mod- 
eled using non-parametric approaches. Results are shown 
for tracking Fred Astaire in a movie dance sequence. 

1 Introduction 
Visual tracking of human motion is a key technology in 

a large number of areas. It has applications ranging from 
3D mouse input [ l ]  to content-based video editing [2]. 
This paper addresses the visual tracking problem for an ar- 
ticulated object such as the human figure, using a known 
kinematic model [3, 4, 5,  61. The kinematics of an artic- 
ulated object provide the most fundamental constraint on 
its motion. Kinematic models play two roles in tracking. 
First, they define the desired output-a state vector of joint 
angles that encodes the degrees of freedom of the model. 
Second, they specify the mapping between states and im- 
age features that makes registration possible. 

A key attribute of any tracking scheme is the choice 
of probabilistic representation for the state estimates. The 
Kalman filter [7] is a classical choice which has been em- 
ployed in earlier figure tracking work (see [8, 9, lo] for 
examples). Unfortunately the Kalman filter is restricted to 
representing unimodal probability distributions. The pres- 
ence of background clutter, self-occlusions, and complex 
dynamics during figure tracking results in a state space 
density function (pdf) which is multi-modal. 

Multiple hypothesis tracking (MHT) is a classical 
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approach to representing multimodal distributions with 
Kalman filters [ 113. It has been used with great effective- 
ness in radar tracking systems, for example. This method 
maintains a bank of Kalman filters, where each filter corre- 
sponds to a specific hypothesis about the target set. In the 
usual approach, each hypothesis correspond to a postulated 
association between the target and a measured feature. The 
multiple hypotheses arise when there are two or more fea- 
tures for which the correct association is not known. These 
methods however assume that a set of discrete features can 
be obtained at each time step, which presupposes that such 
a sensor exists. This is often not true when tracking com- 
plex objects - for example, there is no simple detector for 
the human figure which takes an input image and explic- 
itly returns ‘figure features’ where each feature specifies a 
different skeletal configuration. 

One alternative is to use Monte Carlo methods such 
as Isard and Blake’s CONDENSATION algorithm [ 121. 
While nonparametric models can represent arbitrary pdfs, 
their computational costs are prohibitive for the large state 
spaces required in figure tracking. 

This paper describes a novel formulation of MHT for 
figure tracking. The key idea is to explicitly model and 
track the modes in the state pdf. We use a sampling-based 
state space search process to generate a set of hypotheses 
corresponding to the local maxima in the likelihood. By 
generating hypotheses through state space search we avoid 
the need for a complex figure detector necessary to apply 
classical MHT methods. By explicitly focusing our rep- 
resentation on the modes of the distribution we avoid the 
explosion in the number of samples that a Monte-Carlo- 
based scheme requires. A more detailed comparison be- 
tween our proposed formulation and these methods is made 
in section 5.1. Our approach is based on the observation 
that complex targets such as the human figure usually have 
only small number of well-defined minima in their poste- 
rior density. 

This work is the first application of multiple hypothesis 
techniques to figure tracking. An earlier version of this 
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paper may be found in [ 131. A more detailed analysis is 
also provided in [14]. 
1.1 

Much of the previous work on figure tracking has em- 
ployed 3D kinematic models and focused on detailed esti- 
mation of 3D motion. These approaches require multiple 
camera viewpoints for accurate estimation and rarely op- 
erate on-line. In contrast, perceptual user interface appli- 
cations are more likely to benefit from reliable 2D figure 
tracking that can operate in real-time using a single camera 
input. For example, it’s likely that many useful gestures 
can be recognized from a purely image-based description 
of figure motion, without recourse to 3D motion estimates. 

This paper focuses on figure registration, which is the 
estimation of 2D image plane figure motion across a video 
sequence. Figures are described by a novel class of 2D 
kinematic models called Scaled Prismatic Models (SPM), 
introduced in [2]. These models enforce 2D constraints 
on figure motion that are consistent with an underlying 3D 
kinematic model. Unlike 3D kinematic models, SPM’s do 
not require detailed prior knowledge of figure geometry 
and do not suffer from singularity problems when they are 
used with a single video source. 

Each link in a scaled prismatic model describes the im- 
age plane appearance of an associated rigid link in an un- 
derlying 3D kinematic chain. Each SPM link can rotate 
and translate in the image plane, as illustrated in Figure 1. 
The link rotates at its joint center around an axis which 
is perpendicular to the image plane. This captures the ef- 
fect on link orientation of an arbitrary number of revolute 
joints in the 3D model. The translational degree of free- 
dom (DOF) models the distance between the joint centers 
of adjacent links. It captures the foreshortening that occurs 
when 3D links rotate into and out of the image plane. This 
DOF is called a scaled prismatic joint because in addition 
to translating the joint centers it also scales a template rep- 
resentation of the link appearance. 

The 2D Scaled Prismatic Model 

Figure 1: The effect of revolute (e) and prismatic (d)  
DOF’s on one link from a 2D SPM chain. The arrows show 
the instantaneous velocity of points along the link due to an 
instantaneous state change. 

A complete discussion of SPM models, including a 
derivation of the SPM Jacobian and an analysis of its sin- 
gularities, can be found in [2]. In this report we model the 

figure as a branched SPM chain. Each link in the arms, 
legs, and head is modeled as an SPM link. Each link has 
two degrees of freedom, leading to a total body model with 
19 DOF’s. The tracking problem consists of estimating a 
vector of SPM parameters for the figure in each frame of a 
video sequence, given some initial state. 

2 Probability Density Representation 
The choice of representation for the probability den- 

sity of a tracker state is largely dominated by two con- 
cerns. The unimodality constraint imposed when using 
a Gaussian-based parametric representation such as the 
Kalman Filter is inaccurate when tracking in a cluttered 
environment, while a sample-based representation (such as 
used in the CONDENSATION algorithm) requires a pro- 
hibitive number of samples for encoding the probability 
distribution of a high-DOF SPM model. Instead we adopt 
a hybrid representation which supports a multimodal de- 
scription but requires fewer samples for modeling. 

Our selected representation is based on retaining only 
the modes (or peaks) of the probability density and model- 
ing the local neighborhood surrounding each mode with a 
Gaussian. This addresses the multimodality issue directly, 
while the use of Gaussians eliminates the need for a large 
number of samples to non-parametrically shape the distri- 
bution around each mode. 

3 Mode-based Multiple-Hypothesis Track- 

The basic idea in a probabilistic framework for track- 
ing involves maintaining a time-evolving probability dis- 
tribution of the tracker state. In order to generate a mode- 
based representation for the probability distribution of the 
tracker state, the algorithm has to recover these modes in 
each time-frame. 

The algorithm proposed here may be modularized in a 
manner compatible with Bayes Rule: 

ing 

where xt is the tracker state at time t ,  zt is the observed 
data, 2, is the aggregation of past image observations (ie. 
zT for T = 0 , .  . . , t ) ,  and IC is a normalization constant. 
Furthermore zt is assumed to be conditionally independent 
of Zt-l given xt. 

The stages of the algorithm at each time-frame are 

1. Generating the new prior density p(ztlZt-1) by pass- 
ing the modes of p(xt-llZt-l) through the Kalman 
filter prediction step. 

2. Likelihood computation, involving: 

(a) Creating initial hypothesis seeds by sampling 
the distribution of p(ztlZt-1). 
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(b) Refining the hypotheses through differential 
state-space search to obtain the modes of the 
likelihood p(z t l z t ) .  

(c) Measure the local statistics associated with each 
likelihood mode using perturbation analysis. 

3. Computing the posterior density p(ztIZt) via Baye’s 
Rule ( I ) ,  then updating and selecting the set of modes. 

3.1 Multiple Modes as Piecewise Gaussians 
Given a set of N modes for which the ith mode has a 

state mi, an estimated covariance Si and a probability p i ,  
an accurate construction of the probability density func- 
tion requires a local maxima of value pi located at each 
mi, with the local neighborhood surrounding mi being 
approximately Gaussian with covariance Si. 

In situations when the modes can occur in clusters (as is 
often the case), it is erroneous to use the individual modes 
directly as components in a Gaussian sum representation. 
Consider the simplified example for four hypotheses in 1 D 
state-space as shown in fig. 2(a). If the hypotheses are 
directly considered the components in a Gaussian sum, 
the combined pdf has only two modes. This is shown in 
fig. 2(b). This results in a cluster of weaker modes be- 
ing over-represented at the expense of strong but isolated 
modes. Instead we propose a Piecewise Gaussian (PWG) 
representation where the probability density p ( x )  at a point 
x in the state-space is determined by the Gaussian compo- 
nent providing the largest contribution at x, ie. 

- mi)rSy’(z -mi)  
i= l . .N  

where IC is a normalization constant. 
If for the previous example a PWG representation is 

used instead as in figure 2(c), the strengths of each of the 
modes are preserved. This is preferable since the repre- 
sentation would then be consistent with the local statistics 
determined for each hypothesis. 

(a) (b) (c) 

Figure 2: (a) shows four recovered modes of a probability 
distribution together with local statistics. Using a Gaus- 
sian sum approximation with components located at the 
hypotheses would produce the distribution shown in (b), 
which has only two modes, and also the dominant mode 
is formed from the cluster of weaker modes. The modes 
and local variances are however preserved if a piecewise 
Gaussian approximation is used (c). 

While it is possible that a good Gaussian sum approxi- 
mation may be obtained via a complex fitting process (eg. 
via the EM algorithm[ 15]), the PWG representation pro- 
vides satisfactory approximation at negligible cost of fit- 
ting, although sampling from the PWG representation is 
not as straightforward (discussed later in section 3.3.2). 
3.2 Generating Prior Distributions 

Obtaining the prior density p(ztlZt-,) in the next time 
frame is similar to the Kalman filter prediction step. A dy- 
namical model is applied to the modes of the posterior dis- 
tribution p(zt-1 lZt-1) of the previous time frame to pre- 
dict the new locations of the modes, followed by increasing 
the covariances of the Gaussian components according to 
the process noise. This amount of process noise is dictated 
by the accuracy of the dynamical model. This may also 
be viewed as an approximation to the result p(ztlZ,-l) = 
S,, p(ztIzt- l )p(~t- l IZt- l ) ,  wherep(xt1zt-1) is a Gaus- 
sian centered on the new mode with covariance equal to 
the process noise covariance. Here zt is assumed to be 
conditionally independent of 2,- 1 .  

In the experiments carried out for this paper, we did not 
use a trained or complex dynamical model. The dynamical 
model employed is simply a naive constant velocity pre- 
dictor, and consequently the process noise applied is very 
high since the prediction is often grossly inaccurate. 
3.3 Likelihood Computation 
3.3.1 

In order to model the likelihood p ( z t l z t ) ,  we need to be 
able to compute the probability that the target figure, when 
correctly represented by an SPM model with state z, gen- 
erates the image observation zt in the current frame. This 
is estimated via 

State Probabilities from Image Measurements 

where U represent image pixel coordinates, I ( u )  are the 
image pixel values at U, T(u ,  x) are the overlapping tem- 
plate pixel values at U when the SPM model has state x, 
and cr2 is the pixel noise variance (this has to be known 
apriori or experimentally obtained). The product is then 
evaluated for all pixels located within the boundaries of 
the figure. 

Based on (3), it may be observed that the likelihood can 
be maximized by minimizing (1(u) - T(u ,  zt))’. This is 
achieved through template registration, which may be con- 
sidered equivalent to recovering the local maximum likeli- 
hood solution. 

3.3.2 Hypothesis Sampling 

We first consider the case of sampling from a single trun- 
cated Gaussian. This involves obtaining samples from the 
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original Gaussian distribution, followed by discarding the 
samples which fall outside the truncation boundary. This 
may be continued until a satisfactory number of valid sam- 
ples have been obtained. 

The PWG distribution may be equivalently expressed as 
a union of separate truncated Gaussians with aligned bor- 
ders, where the borders denote points for which the proba- 
bility values computed from either Gaussian component on 
opposite sides of the border are the same (ie. there are no 
probability discontinuities at the borders). Sampling from 
the PWG distribution may therefore be carried out with the 
following steps: 

Select the ith mode with probability pz  from the set of 
N modes. 

Obtain a single sample s from the original Gaussian 
distribution associated with the ith mode. 

I f s  lies within the boundaries of the ith mode (ie. p ( s )  
satisfies (2)), accept the sample; otherwise reject it. 

Return to step 1 until the required number of accepted 
samples have been obtained. 

3.3.3 State-Space Search for Likelihood Modes 

Starting with the initial SPM'model states obtained from 
sampling the prior distribution p ( z t  IZt-l), the states are 
optimized locally in order to converge on the modes of the 
likelihood p(z t l z t ) .  This achieved by maximizing (3), or 
equivalently by obtaining 

This is in fact identical to differential template registration 
of the 2D SPM model whereby the sum of squared pixel 
residuals is minimized. For this we employ the iterative 
Gauss-Newton method, which has an advantage of simul- 
taneously recovering the local variances of each mode. 
3.4 Deriving Posterior Distributions 

Computing the posterior density via (1) involves the 
multiplication of the prior density p ( z t l Z t - l )  and likeli- 
hood p ( z t  Izt) functions, where both functions are repre- 
sented in PWG forms as described in the previous sections. 
The posterior density may be approximated by taking pairs 
of modes from the prior and likelihood distributions and 
multiplying the Gaussians independently. This may be 
further trimmed by selecting only the dominant posterior 
modes. 

To prevent an exponential increase in modes in our 
experiments, each likelihood mode generates a posterior 
mode by combining with the most compatible prior mode. 
This is acceptable as the modes of the likelihood are the 

dominant factors when a constant velocity predictor with 
high process noise is used. If a superior predictor is avail- 
able, greater emphasis may be placed on the prior modes. 

4 Experimental Results 
The algorithm was tested on three sequences involving 

Fred Astaire from the movie 'Shall We Dance'. A 2D 19- 
DOF SPM model is manually initialized in the first image 
frame, after which tracking is fully automatic. The aug- 
mented state-space in this case has 38 dimensions because 
the predictor used is a second order auto-regressive (AR) 
model. Typically the joint probability distribution in the 
state-space is described via 10 modes in a PWG represen- 
tation. 

In fig. 3, three key frames from an original sequence of 
eighteen frames are shown, together with the results ob- 
tained from using a single mode tracker. Here the stick 
figure denotes the current state of the tracker. It can be 
observed that the tracker fails to cope with the ambigu- 
ity resulting from self-occlusion when Fred Astaire's legs 
cross. 

In fig. 4, the multiple modes of the tracker are shown in 
the top row. The bottom row shows the dominant mode 
at each frame, which is solely determined via minimuni 
pixel squared residual error. This shows the ability of 
the tracker to handle the ambiguities of self-occlusion by 
maintaining multiple modes, without even the need for a 
complex dynamical model. 

However, the computational cost of using multiple 
modes increases at least linearly with the number of modes. 
In the above case, the single-mode tracker completed the 
tracking sequence of 18 frames in about 18 seconds. The 
10-mode tracker required approximately 2 minutes. Nev- 
ertheless the advantage gained from the stability of the 
tracker is significantly more critical. 

5 Previous Work 
The first works on articulated 3D tracking were [3, 41. 

Yamamoto and Koshikawa [5] were the first to apply 
modern kinematic models and gradient-based optimization 
techniques, but their results were limited to 2D motion. 
Other 3D tracking works include [6, 16, 17, 181. The work 
of Ju and et. al. [ 191 is perhaps the closest to our 2D SPM. 
Other 2D figure tracking results can be found in [20]. 

Early applications of Kalman filters (KF) to rigid body 
tracking appear in [21, 22, 231. Figure tracking schemes 
which use the Kalman filter are discussed in [8, 91. All 
of these works employ the conventional unimodal KF. One 
exception is Shimada et. al. [lo], in which a simple multi- 
ple hypothesis approach is used to handle reflective ambi- 
guity under orthographic projection. 

The first applications of classical multiple hypothesis 
tracking techniques to computer vision problems appeared 
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Figure 3: Single Mode Tracking Results. Top row: three frames from the original sequence. Bottom row: the single- 
hypothesis tracker fails to handle the self-occlusion caused by Fred Astaire’s legs crossing. 

in [24, 251. An early survey of these techniques can be 
found in [26]. Recently, Rasmussen and Hager [27] used 
the joint probabilistic data association filter (JPDAF) [ 111 
to track multi-part objects, such as a face and hand. In con- 
trast to our MHT framework, the JPDAF approach uses a 
correspondence-based framework for generating hypothe- 
ses. Each target is influenced by a linear combination of 
the resulting measurements. 
5.1 Comparisons to Classical MHT and Monte 

Carlo Methods 
Multiple hypothesis tracking was originally developed 

for radar tracking systems where the measured features are 
a set of discrete ‘blips’. The multiple hypotheses are gen- 
erated by postulating associations between a single target 
and each of the different features. In the case of figure 
tracking there is however no detector for the human fig- 
ure which explicitly returns features giving different prob- 
able skeletal configurations in each image frame. One pos- 
sible solution would be to consider all combinations of 
lower-level features, eg. edges obtained from an edge de- 
tector, which form high-level ‘figure features’. However in 
scenes with significant clutter, this rapidly leads to an al- 
most intractable number of hypotheses [24,25]. More im- 
portantly, discrete features are not suitable to a large class 
of problems. For example when using models based on 
appearance or optic-flow, the data association between the 
model and image pixels is both probabilistic and continu- 
ous - every different set of pixels is a separate feature with 
a corresponding probability of association to the model. In 
these instances, classical MHT methods are not applicable. 

Instead of using a separate feature-detection process 
based on image correspondences, our formulation of hy- 

pothesis sampling and local state-space search recovers 
MH states as part of the tracking process. This method 
is also capable of coping with the above-mentioned prob- 
lems for which the feature set in continuous. The multiple 
hypotheses in our method are not simply data-association 
hypotheses between target and features, but state-space hy- 
potheses which locally maximize the likelihood of the ob- 
served image. 

Alternatively Monte Carlo methods, such as the CON- 
DENSATION algorithm [ 121, can be used. These meth- 
ods express the pdf of the tracker state non-parametrically 
with a fair set of samples. The number of samples required 
for accurately modeling the pdf increases with both the di- 
mensionality of the state space and the variance of the pdf, 
which in the case of tracking is inversely related to the ac- 
curacy of the predictor. In our case with 38 state-space di- 
mensions and a weak constant velocity dynamical model, 
a prohibitive number of samples will be required for reli- 
able tracking with CONDENSATION. A further problem 
with the sample-based pdf representation is that only the 
moments of the pdf can be recovered easily. Hence for ex- 
ample while it may be simple to compute the mean state, 
the maximum likelihood (ML) estimate may not be found 
accurately, and more significantly the maximum aposteri- 
ori (MAP) estimate is difficult to compute. 

Experiments carried out using the authors’ implemen- 
tation of the CONDENSATION algorithm bear out these 
observations. Tracking was attempted on sequences of 
a person walking using a 26-dimensional tracker based 
on templates (instead of contours as in [ 121). When a 
second-order autoregressive (AR)  model trained on walk- 
ing dynamics was applied, tracking was successful when 
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Figure 4: Mode-based Multiple Hypothesis Tracking Results. Top row: the multiple modes of the tracker are shown. 
Bottom row: the dominant mode is shown, which demonstrate the ability of the tracker to handle ambiguous situations and 
thus survive the occlusion event. 

at least 50 samples were used. However tracking with 
this AR model can be carried out more efficiently by us- 
ing our single-hypothesis tracker, with running speeds of 
6fps versus 0.4fps. To compare performances when a con- 
stant velocity dynamical model was applied instead, we 
used 200 samples in our CONDENSATION implementa- 
tion to set the running speed to be approximately equal to 
our multiple-hypothesis tracker. While the former failed 
to track after the fourth image frame, our MH tracker was 
successful for the entire 48 frames. 

Our approach copes with weak dynamical models and 
high-dimensional state spaces by carrying out sample re- 
finement. This allows successful tracking to be achieved 
with only ten samples. Furthermore because a parametric 
representation is used throughout the entire process, both 
the MAP and ML estimates can be recovered easily. 

6 Conclusions and Future Work 
We have introduced a novel multiple hypothesis track- 

ing algorithm for complex targets with high dimensional 
state spaces. The key insight is to represent and track the 
modes in the posterior state density function. These modes 
are likely to be sparse and separated for visually com- 
plex targets such as the human figure. Experimental re- 
sults from tracking one of Fred Astaire’s dance sequences 
demonstrates the superior performance of our MHT ap- 
proach over a standard Kalman filter. 

In the near future we will present comparative experi- 
mental results to that of the CONDENSATION algorithm. 
We also plan to extend our MHT framework to handle self- 
occlusions and motion discontinuities in an explicit man- 
ner. We will also be investigating the integration of fig- 

ure tracking with background modeling as well as figure- 
background segmentation. 
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