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Abstract

A snake is an energy-minimizing spline guided by external constraint forces and influenced by image.
forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock
onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the cap-
ture region surrounding a feature. Snakes provide a unified account of a number of visual problems, in-
cluding detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We
have used snakes successfully for interactive interpretation, in which user-imposed constraint forces

guide the snake near features of interest.

1 Introduction

In recent computational vision research, low-
level tasks such as edge or line detection, stereo
matching, and motion tracking have been widely
regarded as autonomous bottom-up processes.
Marr and Nishihara [11], in a strong statement of
this view, say that up to the 2.5D sketch, no
“higher-level” information is yet brought to bear:
the computations proceed by utilizing only what
is available in the image itself. This rigidly se-
quential approach propagates mistakes made at
a low level without opportunity for correction. It
therefore imposes stringent demands on the reli-
ability of low-level mechanisms. As a weaker but
more attainable goal for low-level processing, we
argue that it ought to provide sets of alternative
organizations among which higher-level pro-
cesses may choose, rather than shackling them
prematurely with a unique answer.

In this paper we investigate the use of energy
minimization as a framework within which to
realize this goal. We seek to design energy func-
tions whose local minima comprise the set of
alternative solutions available to higher-level
processes. The choice among these alternatives
could require some type of search or high-level
reasoning. In the absence of a well-developed
high-level mechanism, however, we use an in-
teractive approach to explore the alternative

organizations. By adding suitable energy terms to
the minimization, it is possible for a user to push
the model out of a local minimum toward the
desired solution. The result is an active model
that falls into the desired solution when placed
near it.

Energy minimizing models have a rich history
in vision going back at least to Sperling’s stereo
model [16]. Such models have typically been
regarded as autonomous, but we have developed
interactive techniques for guiding them. Interact-
ing with such models allows us to explore the en-
ergy landscape very easily and develop effective
energy functions that have few local minima and
little dependence on starting points. We hope
thereby to make the job of high-level interpreta-
tion manageable yet not constrained un-
necessarily by irreversible low-level decisions.

The problem domain we address is that of
finding salient image contours—edges, lines, and
subjective contours—as well as tracking those
contours during motion and matching them in
stereopsis. Our variational approach to finding
image contours differs from the traditional ap-
proach of detecting edges and then linking them.
In our model, issues such as the connectivity of
the contours and the presence of corners affect
the energy functional and hence the detailed
structure of the locally optimal contour. These
issues can, in principle, be resolved by very high-
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Fig. 1. Lower-left: Original wood photograph from Brodatz.
Others: Three different local minima for the active contour
model.

level computations. Perhaps more importantly,
high-level mechanisms can interact with the con-
tour model by pushing it toward an appropriate
local minimum. Optimization and relaxation
have been used previously in edge and line detec-
tion, [3,5,13,24,25], but without the interactive
guiding used here.

In many image interpretation tasks, the correct
interpretation of low-level events can require
high-level knowledge. Consider, for example, the
three perceptual organizations of two dark lines
in figure 1. The three different organizations cor-
respond to three different local minima in our
line-contour model. It is important to notice that
the shapes of the lines are materially different
in the three examples, not just because of a dif-
ferent linking of line segments. The segments
themselves are changed by the perceptual
organization.

@

Without detailed knowledge about the object
in view, it is difficult to justify a choice among the
three interpretations. Knowing that wood is a
layered structure, or perhaps inferring its layered
structure from elsewhere in the picture could
help to rule out interpretation (b). Beyond that,
the ‘correct’ interpretation could be very task de-
pendent. In many domains, such as analyzing
seismic data, the choice of interpretation can de-
pend on expert knowledge. Different seismic in-
terpreters can derive significantly different per-
ceptual organizations from the same seismic
sections depending on their knowledge and
training. Because a single ‘correct’ interpretation
cannot always be defined, we suggest low-level
mechanisms which seek appropriate local min-
ima instead of searching for global minima.

Unlike most other techniques for finding
salient contours, our model is active. It is always
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minimizing its energy functional and therefore
exhibits dynamic behavior. Because of the way
the contours slither while minimizing their en-
ergy, we call them snakes. Changes in high-level
interpretation can exert forces on a snake as it
continues its minimization. Even in the absence
of such forces, snakes exhibit hysteresis when ex-
posed to moving stimuli.

Snakes do not try to solve the entire problem of
finding salient image contours. They rely on
other mechanisms to place them somewhere
near the desired contour. However, even in cases
where no satisfactory automatic starting mech-
anism exists, snakes can still be used for semi-
automatic image interpretation. If an expert user
pushes a snake close to an intended contour, its
energy minimization will carry it the rest of the
way. The minimization provides a ‘power assist’
for a person pointing to a contour feature.

Snakes are an example of a more general tech-
nique of matching a deformable model to an
image by means of energy minimization. In spirit
and motivation, this idea shares much with the
rubber templates of Widrow [23]. From any start-
ing point, the snake deforms itself into conform-
ity with the nearest salient contour. We have ap-
plied the same basic techniques to the problem of
3D object reconstruction from silhouettes by
using energy minimizing surfaces with preferred
symmetries [17]. We expect this general approach
will find a wide range of applicability in vision.

In section 2 we present a basic mathematical
description of snakes along with their Euler
equations. Then in section 3 we give details of the
energy terms that can make a snake attracted to
different types of important static, monocular
features such as lines, edges, and subjective con-
tours. Section 4 addresses the applicability of
snake models to stereo correspondence and mo-
tion tracking. Finally, section 5 discusses further
refinements and directions of our current work.

2 Basic Snake Behavior

Our basic snake model is a controlled continuity
[18] spline under the influence of image forces
and external constraint forces. The internal
spline forces serve to impose a piecewise smooth-
ness constraint. The image forces push the snake
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toward salient image features like lines, edges,
and subjective contours. The external constraint
forces are responsible for putting the snake near
the desired local minimum. These forces can, for
example, come from a user interface, automatic
attentional mechanisms, or high-level interpre-
tations.

Representing the position of a snake paramet-
rically by v(s) = (x(s), ¥(s)), we can write its energy
functional as

1
E::)akc = j() Esnake(v(s)) dS

- j PEn(V($)) + Eimage(¥(5))
+ E n(v(s)) ds (1)

where E;, represent the internal energy of the
spline due to bending, E,,,. gives rise to the
image forces, and E_,, gives rise to the external
constraint forces. In this section, we develop E,,,
and give examples of E_, for interactive inter-
pretation. Ej,,. is developed in section 3.

2.1 Internal Energy

The internal spline energy can be written

Ein = (a()]v,()* + B()Ivi(8)]?)/2 (2)

The spline energy is composed of a first-order
term controlled by a(s) and a second-order term
controlled by B(s). The first-order term makes the
snake act like a membrane and the second-order
term makes it act like a thin plate. Adjusting the
weights a(s) and B(s) controls the relative impor-
tance of the membrane and thin-plate terms. Set-
ting B(s) to zero at a point allows the snake to
become second-order discontinuous and develop
a corner. The controlled continuity spline is a
generalization of a Tikonov stabilizer [19] and
can formally be regarded as regularizing [14,15]
the problem.

Details of our minimization procedure are
given in the appendix. The procedure is an O(n)
iterative technique using sparse matrix methods.
Each iteration effectively takes implicit Euler
steps with respect to the internal energy and ex-
plicit Euler steps with respect to the image and
external constraint energy. The numeric con-




324  Kass, Witkin, and Terzopoulos

siderations are relatively important. In a fully ex-
plicit Euler method, it takes O(n?) iterations each
of O(n) time for an impulse to travel down the
length of a snake. The resulting snakes are flac-
cid. In order to erect more rigid snakes, it is vital
to use a more stable method that can accom-
modate the large internal forces. Our semi-
implicit method allows forces to travel the entire
length of a snake in a single O(n) iteration.

2.2 Snake Pit

In order to experiment with different energy
functions for low-level visual tasks, we have
developed a user-interface for snakes on a Sym-
bolics Lisp Machine. The interface allows a user
to select starting points and exert forces on
snakes interactively as they minimize their en-
ergy. In addition to its value as a research tool,
the user-interface has proven very useful for
semiautomatic image interpretation. In order to
specify a particular image feature, the user has

Ri=isE

Fig. 2. The Snake Pit user-interface. Snakes are shown in black, springs and the volcano are in white.

only to push a snake near the feature. Once close
enough, the energy minimization will pull the
snake in the rest of the way. Accurate tracking of
contour features can be specified in this way with
little more effort than pointing. The snake energy
minimization provides a ‘power assist for
image interpretation.

Our interface allows the user to connect a
spring to any point on a snake. The other end of
the spring can be anchored at a fixed position,
connected to another point on a snake, or
dragged around using the mouse. Creating a
spring between x; and x, simply adds
—k(x, — x,)* to the external constraint energy

con*

In addition to springs, the user interface pro-
vides a 1/7 repulsion force controllable by the
mouse. The 1/r energy functional is clipped near
r=0 to prevent numerical instability, so the
resulting potential is depicted by a volcano icon.
The volcano is very useful for pushing a snake
out of one local minimum and into another.

Figure 2 shows the snake-pit interface being




used. The two dark lines are different snakes
which the user has connected with two springs
shown in white. The other springs attach points
on the snakes to fixed positions on the screen. In
the upper right, the volcano can be seen bending
a nearby snake. Each of the snakes has a sharp
corner which has been specified by the user.

3 Image Forces

In order to make snakes useful for early vision we
need energy functionals that attract them to
salient features in images. In this section, we pre-
sent three different energy functionals which at-
tract a snake to lines, edges, and terminations.
The total image energy can be expressed as

a weighted combination of the three energy

functionals

Fig. 3. Two edge snakes on a pear
user has pulled one of the snakes away from the edge of the
pear. Others: After the user lets go, the snake snaps back to the

edge of the pear.

and potato. Upper-left: The

Snakes 325

Eimagc = wlineE[ine + wedgeEedge + Wtemelcrm
(3)

By adjusting the weights, a wide range of snake
behavior can be created.

3.1 Line Functional

The simplest useful image functional is the
image intensity itself. If we set

Eline=1(x’y) (4)

then depending on the sign of wy,., the snake will
be attracted either to light lines or dark lines.
Subject to its other constraints, the snake will try
to align itself with the lightest or darkest nearby
contour. This energy functional was used with
the snakes shown in figure 1. By pushing with the
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volcano, a user can rapidly move a snake from
one of these positions to another. The coarse con-
trol necessary to do so suggests that symbolic at-
tentional mechanisms might be able to guide a
snake effectively.

3.2 Edge Functional

Finding edges in an image can also be done with
a very simple energy functional. If we set E4,. =
—|VI(x, )%, then the snake is attracted to con-
tours with large image gradients. An example of
the use of this functional is shown in figure 3. In
the upper left, a user has placed two snakes on
the edges of the pear and potato. He has then
pulled part of the snake off the pear with a spring.
The remaining pictures show what happens
when he lets go. The snake snaps back rapidly to
the boundary of the pear.

3.3 Scale Space

In figure 3, the snake was attracted to the pear
boundary from a fairly large distance away be-
cause of the spline energy term. This type of con-
vergence is rather common for snakes. If part of a
snake finds a low-energy image feature, the
spline term will pull neighboring parts of the
snake toward a possible continuation of the fea-
ture. This effectively places a large energy well
around a good local minimum. A similar effect
can be achieved by spatially smoothing the edge-
or line-energy functional. One can allow the
snake to come to equilibrium on a very blurry en-
ergy functional and then slowly reduce the blur-
ring. The result is minimization by scale-con-
tinuation [20,21].

In order to show the relationship of scale-space
continuation to the Marr-Hildreth theory of
edge-detection [10], we have experimented with a
slightly different edge functional. The edge-
energy functional is

Eline = _(Gc * V21)2 (5)

where G, is a Gaussian of standard deviation o.
Minima of this functional lie on zero-crossings
of G,V which define edges in the Marr-

Hildreth theory. Adding this energy term to a
snake means that the snake is attracted to zero-
crossings, but still constrained by its own
smoothness. Figure 4 shows scale-space con-
tinuation applied to this energy functional. The
upper left shows the snake in equilibrium at a
very coarse scale. Since the edge-energy function
is very blurred, the snake does a poor job of
localizing the edge, but is attracted to this local
minimum from very far away. Slowly reducing
the blurring leads the snake to the position
shown in the upper right and finally to the posi-
tion shown in the lower left. For reference, the
zero-crossings of G, VA corresponding to the
energy function of the snake in the lower left are
shown superimposed on the same snake in the
lower right. Note that the snake jumps from one
piece of a zero-crossing contour to another. At
this scale, the shapes of the zero-crossings are
dominated by the small-scale texture rather than
the region boundary, but the snake nevertheless
is able to use the zero-crossings for localization
because of its smoothness constraint.

3.4 Termination Functional

In order to find terminations of line segments
and corners, we use the curvature of level lines in

Fig. 4. Upper-left: Edge snake in equilibrium at coarse scale.
Upper-right: Snake in equilibrium at intermediate scale.
Lower-left: Final snake equilibrium after scale-space con-
tinuation. Lower-right: Zero-crossings overlayed on final
snake position.




a slightly smoothed image. Let C(x, y) = G,(x, y) *
I(x,y) be a slightly smoothed version of the
image. Let® = tan™' (C,/C,) be the gradient angle
and letn = (cos 0,sin @) and n, = (—sin 6, cos 0)
be unit vectors along and perpendicular to the
gradient direction. Then the curvature of the level
contours in C(x, y) can be written

00
Eum = (6)
_ 0°C/on?}
~ 9C/én 0
C,,C? — 2C,,C,C, + C,,C?
= (C2 + C2)72 ()
x y

By combining E4,, and E,.,, we can create a
snake that is attracted to edges or terminations.
Figure 5 shows an example of such a snake ex-
posed to a standard subjective contour illusion
[7]. The shape of the snake contour between the
edges and lines in the illusion is entirely deter-
mined by the spline smoothness term. The varia-
tional problem solved by the snake is very closely
related to a variational formulation proposed by
Brady et al. [2] for the interpolation of subjective
contours. Ullman’s [22] proposal of interpolating

'S |

Fig. 5. Right: Standard subjective contour illusion. Left:

Edge/termination snake in equilibrium on the subjective
contour.

-
o
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using piecewise circular arcs would probably
also produce a very similar interpolation. An ap-
pealing aspect of the snake model is that the
same snake that finds subjective contours can
very effectively find more traditional edges in
natural imagery. It may, moreover, provide some
insight into why the ability to see subjective con-
tours is important.

A further unusual aspect of the snake model
that bears on the psychophysics of subjective
contours is hystheresis. Since snakes are constan-
tly minimizing their energy, they can exhibit hys-
teresis when shown moving stimuli. Figure 6
shows a snake tracking a moving subjective con-
tour. As the horizontal line segment on the right
moves over, the snake bends more and more
until the internal spline forces overpower the
image forces. Then the snake falls off the line and
reverts to a smoother shape. Bringing the line
segment close enough to the snake makes the
snake reattach. While it is difficult to show the
hysteresis in a still picture, the reader can easily
verify the corresponding hysteresis in human vi-
sion by recreating the moving stimulus. This type
of hysteresis is uncharacteristic of purely bottom-
up processes and global optimizations.
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Fig. 6. Above left: Dynamic subjective contour illusion. Se-
quence is left to right, top to bottom. Above Right: Snake at-
tracted to edges and terminations. As the moving horizontal

4 Stereo and Motion

4.1 Stereo

Snakes can also be applied to the problem of
stereo matching. In stereo, if two contours corre-
spond, then the disparity should vary slowly
along the contour unless the contour rapidly
recedes in depth. Psychophysical evidence [4} of
a disparity gradient limit in human stereopsis in-
dicates that the human visual system at least to
some degree assumes that disparities do not
change too rapidly with space. This constraint
can be expressed in an additional energy func-
tional for a stereo snake:

Egero = (¥5(s) = V() ©)

line slides to the right, the snake bends until it falls off the
line. Bringing the line close enough makes the snake reattach.

where vi(s) and v*(s) are left and right snake
contours.

Since the disparity smoothness constraint is
applied along contours, it shares a strong simi-
larity with Hildreth’s [8] smoothness constraint
for computing optic flow. This constraint means
that during the process of localizing a contour in
one eye, information about the corresponding
contour in the other eye is used. In stereo snakes,
the stereo match actually affects the detection
and localization of the features on which the
match is based. This differs importantly, for ex-
ample, from the Marr-Poggio stereo theory [12]
in which the basic stereo matching primitive
zero-crossings always remain unchanged by the
matching process.

Figure 7 shows an example of a 3D surface
reconstructed from disparities measured along a




Fig. 7. Bottom: Stereogram of a bent piece of paper. Below:
Surface reconstruction from the outline of the paper matched
using stereo snakes. The surface model is rendered from a
very different viewpoint than the original to emphasize that it
is a full 3D model, rather than a 2.5D model.
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single stereo snake on the outline of a piece of
paper. The surface is rendered from a very dif-
ferent viewpoint than the original to emphasize
that a 3D model of the piece of paper has been
computed rather than merely a 2.5D model.

4.2 Motion

Once a snake finds a salient visual feature, it
‘locks on.’ If the feature then begins to move
slowly, the snake will simply track the same local
minimum. Movement that is too rapid can cause
a snake to flip into a different local minimum,
but for ordinary speeds and video-rate sampling,
snakes do a good job of tracking motion. Figure 8
shows eight selected frames out of a two-second
video sequence. Edge-attracted snakes were in-
itialized by hand on the speaker’s lips in the first
frame. After that, the snakes tracked the lip
movements automatically.

The motion tracking was done in this case
without any interframe constraints. Introducing
such constraints will doubtless make the tracking

Fig. 8 Selected frames from a 2-second video sequence show-
ing snakes used for motion tracking. After being initialized to

the speaker’s lips in the first frame, the snakes automatically
track the lip movements with high accuracy.
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more robust. A simple way to do so is to give the
snake mass. Then the snake will predict its next
position based on its previous velocity.

5 Conclusion

Snakes have proven useful for interactive specifi-
cation of image contours. We have begun to use
them as a basis for interactively matching 3D
models to images. As we develop better energy
functionals the ‘power assist’ of snakes becomes
increasingly effective. Scale-space continuation
can greatly enlarge the capture region around
features of interest.

The snake model provides a unified treatment
to a collection of visual problems that have been
treated differently in the past. Edges, lines, and
subjective contours can all be found by essen-
tially the same mechanisms. Tracking these fea-
tures through motion and matching them in
stereo is easily handled in the same framework.

Snakes, perhaps, embody Marr’s notion of
‘least commitment’ [9] more than his bottom-up
2.5D sketch. The snake provides a number of
widely separated local minima to further levels of
processing. Instead of committing irrevocably to
a single interpretation, snakes can change their
interpretation based on additional evidence from
higher levels of processing. They can, for exam-
ple, adjust monocular edge-finding based on
binocular matches.

We believe that the ability to have all levels of
visual processing influence the lowest-level vi-
sual interpretations will turn out to be very im-
portant. Local energy-minimizing systems like
snakes offer an attractive method for doing this.
The energy minimization leaves a much simpler
problem for higher level processing.
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Appendix: Numerical Methods

LetEey = Eipage + Econ. When a(s) = a, and B(s) =
B are constants, minimizing the energy func-
tional of equation (1) gives rise to the following
two independent Euler equations:

JE

ext -
Xy + By + e 0 (10)
OE
Q ss+ ss.rs+ ol = 0 (11
Yss T BY 3 )

When o(s) and B(s) are not constant, it is sim-
pler to go directly to a discrete formulation of the
energy functional in equation (2). Then we can
write

Efae = 2, Eiali) + Ecx(i) (12)

Approximating the derivatives with finite dif-
ferences and converting to vector notation with v,
= (X, ) = (x(ih), y(h)), we expand Ej,(i)

E. (i) = ailvi - Vi—1]2/2h2
+ Bilvi—l —2v; + Vi+1|2/2h4 (13)

where we define v(0) = v(n). Let (i) = 0E,,/0x;
and f,(i) = JE.,/dy; where the derivatives are ap-
proximated by a finite difference if they cannot
be computed analytically. Now the correspond-
ing Euler equations are

(Vi = ¥iop) = Qg i(Viey — V)
+ Bioi[viea — 2vio, + v)]
= 2B;[vici — 2v; + vy ]
+ BiwilVi = 2vipy + i)
+ (S, f() =0 (14)

The above Euler equations can be written in ma-
trix form as

Ax + f(x,y) =0 (15)
Ay +f(x,y) =0 (16)

where A is a pentadiagonal banded matrix.

To solve equations (15) and (16), we set the
right-hand sides of the equations equal to the
product of a step size and the negative time
derivatives of the left-hand sides. Taking into ac-




count derivatives of the external forces we use re-
quires changing A at each iteration, so we achieve
faster iteration by simply assuming that f, and f,
are constant during a time step. This yields an ex-
plicit Euler method with respect to the external
forces. The internal forces, however, are com-
pletely specified by the banded matrix, so we can
evaluate the time derivative at time ¢ rather than
time ¢ — 1 and therefore arrive at an implicit
Euler step for the internal forces. The resulting
equations are

Axt + fx(xr~1: yr—l) = _Y(xt - xt—l) (17)
Ay, + fy(xl—l: YI—l) = _Y(YI - yr—l) (18)

where y is a step size. At equilibrium, the time
derivative vanishes and we end up with a solu-
tion of equations (15) and (16).

Equations (17) and (18) can be solved by ma-
trix inversion:

X, = (A + YI)hl(Yxr—l - fx(xx—la yl—l)) (19)
Ye= (A +yD7(yyi- — fyxmpm))  (20)

The matrix A + yI is a pentadiagonal banded
matrix, so its inverse can be calculated by LU
decompositions in O(n) time [6,1]. Hence equa-
tions (19) and (20) provide a rapid solution to
equations (15) and (16). The method is implicit
with respect to the internal forces, so it can solve
very rigid snakes with large step sizes. If the exter-
nal forces become large, however, the explicit
Euler steps of the external forces will require
much smaller step sizes.
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