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A computer algorithm for
reconstructing -
-a scene from two projections

H. C. Longue_t-Higgine

Laboratory of Experimental Psychology, University of Sussex,
Brighto’n BN1 9QG, UK

A simple algorithm for computing the three-dimensional struc-
ture of a scene from a correlated pair of perspective projections
is described here, when the spatial relahonshlp between the two
- projections is unknown. This problem is relevant not only to
photographic surveying! but also to binocular vision®, where the
non-visual information available to the observer about the
orientation and focal length of each eye is much less accurate
* than the optical information supplied by the retinal images
themselves. The problem also arises in monocular perception of
motion®, where the two projections represent views which are
separated in time as well as'space. As Marr and Poggio® have
noted, the fusing of two images to produce a three-dimensional
percept involves two distinct processes: the establishment of a
%:1 correspondence between image pomts in the two views—
the ‘correspondence problem —and the use of the associated
_ disparifies for determining the distances of visible elements in
_the scene. I shall assume that the correspondence problem has
‘been solved; the problem of reconstructing the scene then

" reduces to that of ﬁndmg the relative orlentatlon of the two

viewpoints.

Photogrammetrists know that if a scene is photographed from
two v1ewpomts then the relatlonshlp between the camera posi-
_ tions is uniquely determined, in general, by the photographic
coordinates of just five distinguishable points; but actually
calculating the structure of the scene from five sets of image
.coordinates involves the itérative solution of five simultaneous
third-order equations’. I show here that if the scene contains as
_ many. as eight points whose images can be located in each
projection, then the relative oriéntation of the two projections,
and the structure of the scene, can be computed, in general, from
"y the elght sets of i image coordinates by a direct method which

7 X,.Q..X

: ealls for nothing more difficult than the solution of a set of

simultaneous linear equations.

Let P be a visible point in the scene, and let (X;, X,, X3) and
(X4, X4, X4) be its three-dimensional cartesian coordinates with
respect to the two viewpoints. The ‘forward’ coordinates X; and
X! are necessarily positive. The image coordinates of P in the
two views may then be defined as

(%1, X2) = (X1/ X3, X2/ Xs),
(x4, xb) = (X1/X4, X5/X4)

and it is convenient to supplement them with the dummy
coordinates

1

x3=1, x3=1 (2)

so that one can then write
- Xu./XS; X://Xi,i (“7 v= 1y 2v 3) (3)

As the two sets of three-dimensional coordinates are connected
by an arbitrary displacement, we may write

X.=R..(X,-T,) )

where T is an unknown translational vector and R is an unknown
rigid rotation matrix. (In this and subsequent equations I sum
over repeated Greek subscripts.) The rotation R satisfies the
relationships

X, =

RR=1=RR, detR=1 [6)
and it is convenient to adopt the length of the vector T as the unit
of distance:

(= T% +T3+T3)=1

sets of image coordinates—a relationship which expresses the
condition that correspondmg rays through the two centres of

-prc)]ectlon must intersect in 1 space. We define a new matr1x Q by

Q= RS (7):
where § is the skew-symmetric matnx ‘ ;
0 T, -T; )
s=|-T, 0 T, 8
T, -T,. O :
Equation (8) may be written as
' . S = €roTor

where Erxe =0 unless (A, v, o) is a permutation of (1, 2, 3), in
‘which case ¢,,, =+1.depending on whether this permutation is
even or odd. It follows from equations (4)—(9) that

X.Q.X, = Ry (X ~ TR mEn. T X,
=X —Ten.ToX,

but because the quantity &, is antisymmetric in every pair of its
subscripts, the right—hand side vanishes identically:

(11)

vaxdmg equation (11) by X3X; we arrive at the desued rela-
tionship between the image coordinates:

X.Qu X, = (12)

The next step is to determine the nine elements Q,,,. There will i

be one equation of type (12) for every point P;, namely

(xuxv)IQu.u =0

and in this equatxon the nine quantities (x; x,,), are presumed to

be known. The ratios of the nine unknowns Q,,, can therefore be .

obtained, in general, by solving eight simultaneous linear equa-
tions of type (13), one for each of éight visible points Py, ..., Ps.

I shall not yet discuss the special circumstances under which the - -

solution fails; for the present merely note that if the eight
equations (13) are independent, their solution is entirely
straightforward from a computational point of view.
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I begin by establishing a general relationship between the two
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- them by

‘ﬁ“m4Af:e ,,,ps

mg Q on the left of equation (7) by its transpose we obtam
) QQ= SRRS -§S o (14)

Mg 50 that by the definition of 8,
Lo ’ QMQM~T%W TT - as)

‘ ‘:‘ But T2 = 1 by equatlon (6), and so the trace of QQ must be
o QuQu.=5,-T2=2  (16)
The mne elements of Q can therefore be normalized by dividing

3 trace QQ; the elements of the normalized matrix
QQcan then be used for computmg the ratios of the components
of T -
1 - T% _T1T2 —T1T3
QQ = -T.T, 1 -T3 _Tzr:l e Y))
_T3T1 ""T3T2 . 1 ’r2

There are evidently three independent relationships between
~ the diagonal and the off-diagonal elements of QQ; these supply
three mdependent checks on the results obtained so far. The

~ absolute signs of the T, and the Q,,, are still undetermined but,

as we shall see, these ambngumes are easily resolved later.
“We are now in a position to compute the elements of the
rotation matrix R. First note'that equation- (7) has a sxmple

_interpretation in terms of vector products. If we regard each oW

. of Q, and each row of R as a vector then o
’ Q. =TxR, (a~123) ) W(18)

and the condition for R to represent a proper rotation can be
: expressed in a similar form

_ "R.=R;xR, - o (19)
for a, B, y such that €,5, = 1. The problern is then to express the
‘R, in terms of T and the Q..

- By equation (18), R, is orthogonal to Q. and may therefore

" be expressed as a linear combination of T and Q. xT. We
therefore introduce new vectors,

_ W,.=Q.xT (a=1,2, 3) (20)
~End write :
‘ R, =a,T+b,W, NE3Y
Substitution into equation (18) gives. '
o Q. =Tx(a,T+b,W,) = b,(TXW,) 22)
But as T is a unit vector,
TXW,=Tx(Q.xT)=0Q, o (23)
and so )
=1 24)

Turning to equation (19) we deduce that when £.5, =1,
a.T+W, = (a;T+W,) % (a,T+W,)
=a5Q,—a,Qp +WgxW, (25)

But in equation (25) the vectors W,, Qg and Q,, are all ortho-
gonal to T, whereas W, X W, is, by equation (20), a multiple of
T. It follows that in equation (25) the ﬁrst term on the left equals
the last term on the right,

a, T=WyxW, ) (26)
and equation (21) finally becomes
R, =W, +WyxW, o 27

Having obtained in this way the vector T and the three rows of
the matrix R, we can at last find the three-dimensional coor-
dinates X,,, as follows: '

By equation 4),
X.=R,X,-T,)

- The translational vector T must be calculated next. Multlply-:f : from Wthh it fOllOWS that
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S f“ xsnem T,
Introducing the vectors S
i X= (Xrl X2 Xa),” x= (X1, %2, 1) - @29

_ we may write equation (28) in terms of the rows R, of the matrix

R:
. Ry-(X-T) Ry (x—T/X;)
X3 = - = (30)
: R;'(X-T) Ri x—T/Xs)
_from which it follows that
. R —x'R.):
Xj=( 1—X1R3) T (31)

(R;—x1R3)-x

" The other unprimed coordinates are then given by equation (3)

as

X1 =x,Xs, X,= X2X3 \ (32)

‘and the primed coordmates are ﬁnally obtained from equation

).

There are, in fact four distinct solutions to the problem '
associated with “the alternative choices of sign for . the

i components of T and the elements of Q. But any doubt as to

which choices to adopt is easily resolved: the condition that the .

forward coordinates of any point must both be positive will be

satisfied if, and only if, both sets of signs are correctly chosen.

There are certain ‘degenerate’ eight-point conﬁguratlons for
which the algorithm fails because the associated equations (13)
become non-independent. A configuration will be degenerate if

"as many as four of the points lie in a straight line, or if as many as

seven of them lie in a plane. Quite unexpectedly, degeneracy

" also arises if the configuration includes six points at the vertices

of aregular hexagon, or consists of eight points at the vertices of
a cube. The ‘invisibility’ of such configurations to the eight-point
algorithm may be demonstrated by-arguments too long to be
presented here; but the reasons for it are unconnected with any
ambiguity in the mterpretatlon of the resulting projections. A
degenerate configuration 1mmed1ately becomes ‘visible’,
however, if one of the oﬂendmg points P; is moved sl1ghtly away
from its original position. - .

In general, then, the three- dlmenswnal coordmates of aset of
eight or more visible points may be obtained by the following
algorlthm

‘(1) Setupeight equatxons of the form (13), and solve them for

- the ratios of the nine unknowns Q,.,.

(2) Compute the matrix QQ and normallze the ele-
ments of Q by dividing them by v3 trace QQ.

(3) Obtain the magnitudes and the relative signs of the T,
from equation (17); their absolute signs, and those of the Q..,
may have to be chosen arbitrarily at this stage.

_ (4) Define three new vectors by equation (20) and use equa-
tion (27) to-calculate the rows of the matrix R.

(5) Use equations (31) and (32) for computing the unprimed
three-dimensional coordinates of all the visible points, and
equation (4) for calculating the primed coordinates.

(6) Check that the forward coordinates X; and X3 of any
point are both positive. If both signs are negative, alter the signs
of the T, and return to step (5); if X; and X} are of opposite sngn
reverse the signs of the Q,., and return to step 4.

The algorithm yields the most-accurate results when applied
to situations in which the distance D between the centres of
projection is not too small compared with their distances from
the points P;. If the projective coordinates are accurate to a few
seconds of arc, the forward coordinates of the P; can be esti-
mated out to about 19D with great accuracy, and even as far as
100D if the P; are ad [quately spaced in depth. This performance
is comparable with fthat of the human visual system; but that
does not, of course imply that the elght -point algonthm is
actually used in stréreoscoplc vision, as in binocular vision we
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" have at least some information about the relative orientation of

‘ the two'eyes. The most useful applications of the eight-point
algorithm will probably be found in computer vision systems,
where there is still a need for fast and accurate methods of
converting two-dimensional images into three-dimensional
interpretations. '

Ithank Drs A. L. Allan and K. B. Atkinson for the reference
to Thompson', and the RS and SRC for support.
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Local extinction émd écologiéal
re-entry of early Eocene mammals

David M. Schankler

Department of Geological and Geophysical Sciences,
Princeton University, Princeton, New Jersey, USA

The use of high-resolution stratigraphical control in studying the
species sequencing patterns of early Eocene mammals has
recently been demonstrated by Gingerich et al.'™>. These studies
have documented the nature of the tempo and mode of evolu-
tion and have ‘stimulated the debate between adherents of
phyletic gradualism and punctuated eqmllbna All studies have
been largely verticalist (evolutionary) in outlook, equating
" change ‘within- a single basin of deposition with evolution.
However, when I applied these techniques to the early Eocene
condylarth, 'Phenacodus, I found a strong lateral (biogeo-
graphncal and ecological) component influencing the sequencmg
of species in a single basin. I report here that Phenacodus species
are relatively static in size and morphology throughout the local

section studied, and two of these show statistically significant

discontinuities in temporal range. The clumped re-entry of these
species after local disappearance along with the introduction of
- other new taxa points to ecologlcal control of vertical events
within a local section.
T used high-resolution stratlgraphy to study mammalian
evolution at the species level, concentrating on early Focene
- Willwood Formation of northwestern Wyoming because of the
density and continuity of the fossil record preserved in these

sediments. The Elk Creek Section through the Willwood

Formation of the central Bighorn Basin is 773 m thick’, an
represents an estimated 3.5 Myr (ref. 8). Using a 10-m resoluf
tion interval, over 240 fossil localities can be related to this
section. These localities, distributed over a 650-km? area, so far
have produced over 15,000 specimens and are dlstrlbuted
vertically through the section so that more than 50 of the
77 10-m intervals are fossiliferous; half of these have total
mammalian sample sizes (minimum number of 1nd1v1dua.ls)
of over 75.

In arecent review of the systematlcs of the genus Phenacodus,
West® recognized three species from the early Eocene, P. bra-
chypternus, P. vortmani and P. primaevus; his study predates
publication of the Elk Creek Section and the stratigraphical
resolution used was at the level of the zone, that is, early Eocene
Phenacodus were divided into three samples corresponding to
Graybullian (base-530m), Lysitian (530-660m) and
Lostcabinian (660-770 m) zones. P. brachypternus was recor-
ded as being almost wholly restricted to the Graybullian,
whereas the other two species were distributed through the
entire Wasatchian. P. brachypternus and P. vorfmani are rela-
tively well defined fossil species that have always been easily
identified in collections on the basis of size and morphology,
whereas P. primaevus has usually been characterized by a fairly
large variation that has made it difficult to define the bounds of
the species. This has led to the subdivision of P. primaevus into
two to four species'®'. West® did not subdivide this species even_
though the recorded ranges of variation (coefficients of variation
of ~10 for most linear measures) and a range of In 0.8 for tooth
crown area of M, (lower second molar) are almost double those
expected for a single spec1es12'

Inclusion of all large specimens of Phenacodus in a smgle. .

species is untenable, and on the basis of data shown in Fig. 1, the
large phenacodontids have been subdivided into two species,
P. intermedius and P. prtmaevus As previously shown by
Gingerich'>"® and observed in the two smaller species of
Phenacodus, the normal range of variation of In of the crown
area of a molar tooth is of the order of 0.4. In the interval
100-190 m, almost all specimens fall neatly within the expected
range of a single species, the size of which agrees well with the
type of P. intermedius ; thus these specimens are referred to that

species. The single outlier at the 100-m level has a value that

differs by 4 standard deviations from the mean of P. intermedius
specimens, and is therefore too large to be included in that
species. In the interval 200-380 m there is a second well defined.
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hg 1 Speucs-scquencmg pattern of early Eocene Phenacodus in the central Bighorn Basin, Wyommg Stratophenenc plot shows the
" distribution in size and time of the four species, and illustrates the discontinuity in the temporal ranges of P. brachypternus (O) and P. vortmani
~ (#),and the transition in dominance between P. intermedius (O) and P. primaevus (@) at the base of the Upper Haplomylus—Ectocion Zone. Size
‘is mehsured on the abscissa as In of the crown area of the lower second molar (M,) and time is shown on the ordinate as metres above the base of .
_the Elk Creek Section. The horizontal lines at the 730-m level are the maximum ranges of the two species of Phenacodus from the Lostcabinian of
the Wmd Rwer Basin. Note the similarity between the size range of the larger species from the Wmd River Basin and P. intermedius from the E]k
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