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A Versatﬂe Camera’ (,ahbrauon leenmque for -»
High-Accuracy 3D Machine Vision Metrology
Usmg Off-the-Shelf TV Cameras and Lenses

ROGER Y. TSAI

Abstract—A new technique for three-dimensional (3D) camera calibra-_

tion for machine vision metrology using off-the-shelf TV cameras and
lenses is described. The two-stage technique is “aimed at efficient
computation of camera’ external position and orientation relative to
object reference coordinate system as well as the effective focal length,
radial lens distortion, and image scanning parameters. The two-stage
technique has advantage in terms of accuracy, speed, and versatility over
existing state of the art. A critical review of the state of the art is given in
the beginning. A theoretical framework is established, supported by
comprehensive proof in five appendixes, and may pave the way for future
research on 3D robotics vision. Test results using real data are described.
Both accuracy and speed a}e reported. The experimental results are
analyzed and compared with theoretical prediction. Recent effort indi-
cates that with slight modification, the two-stage calibration can be done
in real tlme : -

1. INTRODUCTION

A. The Importance of Versatile Camera Calibration
Techmque :

AMERA CALIBRATION in the context of three—

,dimensional (3D) machine vision is the process of -

determining the internal camera geometric and optical charac-
teristics (intrinsic parameters) and/or the 3D position and
" orientation of the camera frame relative to a certain world
coordinate system (extrmsm parameters), for the following
purposes.

1) Inferring 3D Informatzon from Computer Image
Coordinates: There are two kinds of 3D information to be
inferred. They are different mainly because of the d1fference
in applications. :

a) The first is 3D mformatlon concemmg the locatlon of

. the object, target, or feature. For: simplicity, if the object is a’
a point spot on a mechanical part.

point feature (e.g.,
illuminated by a laser beam, or the corner of an electrical
component on a- prmted circuit board), camera calibration
provides a way of determining a ray in 3D space that the object
point must lie on, given the computer image coordinates. With
two views either taken from two cameras or one camera in two
locations, the position of the object point can be determined by
intersééting the two rays. Both intrinsic and extrinsic parame-

ters need to be calibrated. The applications include mechanical

Manuscnpt received October 18, 1985 revised September 2, 1986. A
version of this paper was presented at the 1986 IEEE International Conference
on Computer Vision and Pattern Recognition and received the Best Paper
Award.

The author is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598.

IEEE Log Number 8613011.

-position and orientation of moving camera (e.g.,

part dimensional measurement, automatic assembly of me-
chanical or electronics components, tracking, robot calibration
and trajectory analysis. In the above applications, the camera
calibration need be done only once.

-b) The second kind is 3D information concerning the
a camera
held by a robot) relative to the target world coordinate system.
The applications include robot calibration with camera-on-
robot configuration, and robot vehicle guidance.

2) Inferring 2D Computer Image Coordinates from 3D
Information: In model-driven inspection or assembly appli-
cations using-machine vision, a hypothesis of the state of the
world can be verified or confirmed by observing if the image
coordinates of the object conform to the hypothesis. In doing

so, it is necessary to.have both the intrinsic and extrinsic -

camera model parameters calibrated so that the two-dimen-
sional (2D) image coordinate can be properly predlcted glven
the hypothetical 3D locatlon of the object. ,

The above purposes can be best served if the following
criteria for the camera calibration-are met.

1) Autonomous: The calibration procedure should not
require operator intervention such as giving initial guesses for
certain parameters, or choosing certain system parameters
manually. . '

2) Accurate: Many applications such as mechanical part

_inspection, assembly, or robot arm calibration require an

accuracy that is one part in a few thousand of the working
range. The camera calibration technique should have the
potential of meeting such accuracy requirements. This re-
quires that the theoretical modeling of .the imaging process
must be accurate (should include lens distortion and perspec-
tive rather than parallel projection).

3) Reasonably Efficient: The complete camera calibra-

tion procedure should not include high dimension (more than
five) nonlinear search. Since type b) application mentioned

earlier needs repeated calibration of extrinsic parameters, the -

calibration approach should allow enough potentlal for high-
speed implementation.

4) Versatile: The calibration techmque should operate
uniformly and autonomously for a wide range of accuracy

" requirements, optical setups, and applications.

5) Need Only Common Off-the-Shelf Camera and
Lens: Most camera calibration techniques developed in the
photogrammetric area require special professional cameras
and processing equipment. Such requirements prohibit full
automation and are labor-intensive and ‘time-consuming to
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. .several categories.

- 1mplement ! The advantages of usmg off the shelf sohd state
" or vidicon camera and lens are ' :

° versatﬂe——sohd state cameras and lenses can be used fora

. var1ety of automation applications; :

° availability—since off-the-shelf solid state cameras and
lenses are common in many applications, they are at hand
when you need them and need not be custom ordered;

. @ familiarity, .user-friendly—not many people have the
experience of operating the professional metric camera
used in photogrammetry or the tetralateral photodiode
Wwith preampliﬁer and associated electronics calibration,

while solid state is easily interfaced with a computer and -

- easy to install.

The next section shows deﬁcrencres of exrstmg techniques in
one or more of these cr1ter1a

B. Why Existing Techniques Need Improvement

In this section, existing techniques are first classified into
The\strength and weakness of each
category are analyzed

Category I—Techniques Involving Full-Scale Nonlinear

_’Optlmzzatzon See [1]-[3], [71, [10] {141, [171, [22], [30],

for example. : o
Advantage: Tt allows easy adaptation of any arbrtrarlly

- accurate yet complex model for imaging.  The best accuracy

obtalned in this category is comparable to thé accuracy of the

new techmque proposed in this paper.

Problems: 1) It requires a good initial guess to start the

nonlinear search. This violates the principle.of automation. 2)

It needs computer-intensive full-scale nonlinear search.

~ Classical Approach: Faig’s technique [7] is a good
representative -for these techniques. It uses a very elaborate
model for imaging, uses at least 17 unknowns for each photo,

" and is very computer-intensive [7]. However, because of the
" large number of unknowns, the accuracy"is excellent. The rms
(root mean square or average) error can be as'good as 0.1 mil.

However, this rms error is in photo scale (i.e., error of fitting
the model with the observations in image plane). .-When
transformed into 3D error, it is comparable to the average
error (0.5 mil) obtained using monoview multiplane calibra-

tion technique, which is the’ typical cas¢ among the various

two-stage techniques proposed in this paper, Another reason
why such photogrammetric techniques produce very accurate
results is that large professional format photo is used rather

" than solid-state. image array such as CCD. The resolution for

such photos is generally three to four times better than that for
the solid-state imaging sensor array.

Direct linear transformation (DLT): Another example
is the direct linear transformation (DLT) developed by Abdel-
Aziz and Karara [1], [2]. One reason why DLT was developed
is that only linear equations need be solved. However, it was
later found that, unless lens drstortton is ignored, full-scale
nonlmear search 1s .needed. In [14, p 36] Karara the co-

! Although exrstrng -techniques such as direct lrnear transforrnat1on (see
Section I-B) can be implemented using common solid state or vidicon
cameras, the version NBS implemented uses high resolution analog tetra-
lateral photodiode, and the associated optoelectromcs accessories need specral
manual calibration (see [S] for details).

" inventor of DLT comments

When orrglnally presented in 1971 (Abdel Aziz and Karara .
1971), the DLT basic equations ‘did not involve any image

refinement parameters, and represented an actual linear

transformation between comparator coordinates and object-

space coordinates. When the DLT mathematical model was.

later expanded to encompass image refinement parameters, the

title DLT was retained unchanged.

Although Wong {30] mentioned that there are two possible

procedures of using DLT (one entails solving linear equations

only, and the other requires nonlinear search), the procedure
using linear equation solving actually contains approximation.

- One of the artificial parameters he introduced, «;, is a function

of (x, y, z) world coordinate and therefore not a constant.
Nevertheless, DLT bridges the gap between photoorammetry
and computer vision $o that both areas can use DLT directly to
solve camera calibration problem

When lens distortion is not considered, DLT falls into the
second category (to be discussed later) that entails solving
linear equations only. I, too, has its _pros and cons and will be
discussed later when the second category is presented. Dainis
and Juberts [5] from the Marufacturing Engineering Center of
NBS reported results using DLT for camera calibrations to do

_accurate measurement-of robot trajectory motion.. Although

the NBS system can do 3D measurement at a rate of 40 Hz, the
camera calibration was not and need not be done in real time.
The accuracy reported -uses the same type of measure for
accessing or evaluating camera calibration accuracy as Type I
measure used in this paper (see Section III-A). The total
accuracy in 3D is one part in 2000 within the center 80 percent

of the detector field of view. This is comparable to the .

accuracy of the proposed two-stage method in measuring the x
and y parts of the 3D coordinates (the proposed two-stage
technique yields better percentage accuracy for the depth).
Notice, however, that the image serising device NBS used is
not a TV camera but a tetralateral photodiode. It senses the
position of incidence light spot on the surface of detector by

means of analog-and uses & 12-bit A/D converter to convert the

analog positions into a digital quantity to be processed by the
computer. Therefore, the™ tetralateral photodiode has an
effective 4K X 4K spatial resolution, as-opposed to a 388 X

.480 full-resolution Fairchild CCD area sensor. Many thought

that the low resolution characteristics of solid-state imaging
sensor could not be used for h10h—accuracy 3D metrology.
This paper reveals that with proper calibration, a solid-state
sensor (such as CCD) is still a valid tool in high-accuracy 3D
machine vision metrology applications. Dainis and Juberts [5]
mentioned that the accuracy is 100 percent lower for points
outside the center 90-percent field of view. This suggests that
lens distortion is not considered when using DLT to calibrate
the camera. Therefore, only linear equations need to be
solved. This actually puts the NBS work in a different category
that follows which include all techniques that computes the
perspective transformation matrix first. Again, the pros and
cons for the latter will be discussed later.

- Sobel, Gennery, Lowe: Sobel [23] described a system
for calibrating a camera using nonlinear equation solving.
Eighteen parameters must be optimized. The approach is




milar to Faig’s method described earlier. No accuracy results
g were reported Gennery [10] described a method that finds

- ‘camera parameters iteratively by minimizing the error of -

E epipolar constraints without using 3D coordinates of calibra-
tion points. It is mentioned in {4, p. 253] and [20, p. 50] that
" the technique is too error-prone.

Category II—Techniques Involving Computing Perspec-
tive Transformation Matrix First Using Linear Equation
Solving: See [1], [2], [9], [11], [14], [24] [25], and [31], for
example.

Advantage: No nonlinear optimization is needed.
~ Problems: 1) Lens distortion cannot be considered. 2)
The number of unknowns in linear equations is much larger
than the actual degrees of freedom (i.e., the unknowns to be
solved are not linearly independent). The disadvantage of such
redundant parameterization is that erroneous combination of
these parameters can still make a good fit between experimen-
tal observations and model prediction in real situation when
_ the observation is not perfect. This means the accuracy
potential is limited in n01S}\l\srtuat10n o

Although the equations characterizing the transformation
from 3D world coordinates to 2D image coordinates are
nonlinear functions of the extrinsic and intrinsic camera model
parameters (see Section II-C1 and -2 for definition of camera
parameters), they are linear if lens distortion is ignored and if

the coefficients of the 3 X 4 perspective transformation matrix

are regarded as unknown parameters (see Duda and Hart [6] .

for a definition of perspective transformation matrix). Given
the 3D world coordinates of a number of points and the

corresponding 2D image coordinates, the coefficients in the

perspective transformation matrix can be solved by least

- square solution of an overdetermined systems of linear

equations. Given the perspective transformation matrix, the

camera model parameters can then be computed if needed.
~ However, many investigators have found that ignoring lens
distortion is unacceptable when doing 3D measurement (e.g.,

Itoh ef al. [12], Luh and Klassen [16]). The error of 3D -

measurement reported in this paper using two-stage camera
calibration technique would have been an order of magnitude
larger if the lens distortion were not corrected.

Sutherland: Sutherland [25] formulated very exphc1t1y.

the procedure for computing the perspective transformation
matrix given 3D world coordinates and 2D image coordinates
of a number of points. It was applied to graphics applications,
and no accuracy results are reported.

" Yakimovsky and Cunningham. Yakimovsky and Cun-
ningham’s stereo program [31] was developed for the JPL

Robotics Research Vehicle, a testbed for a Mars rover and

remote processing systems. Due to the narrow field of view
* and large object distance, they used a highly linear lens and
ignored distortion. They reported that the 3D measurement
accuracy of +5 mm at a distance of 2 m. This is equivalent to
~ a depth resolution of one part in 400, which. is one order of
magnitude less accurate than the test results to be described in
this paper. Oné reason is that Yakimovsky and Cunningham’s
system does not consider lens distortion. The other reason is
probably that the unknown parameters computed by linear
equations are not linearly independent. Notice also that had it

“not been for the fact that the field of view in Yakimovsky and
‘Cunningham’s system is narrow and that the object distance is

large, ignoring distortion should cause more error..

DLT: By disregarding lens distortion, DLT developed
by Abdel-Aziz and Karara [1], [2] described in Category I falls
into Category II. Accuracy results on real experiments have
been. reported only by Dainis and Juberts from NBS [5]. The
accuracy results and the comparison with the proposed
technique are described earlier in Category I.

Hall et al.: ‘Hall et al. [11] used a straightforward linear
least square technique to solve for the elements of perspective
transformation matrix for doing 3D curved surface measure-
ment. The computer 3D coordinates were tabulated, but no
ground truth was given, and therefore the accuracy is
unknown.

Ganapathy, Strat: Ganapathy [9] derived a noniterative
technique in computing camera parameters given the perspec-
tive transformation matrix computed using any of the tech-
niques discussed in this category. He used the perspective
transformation matrix given from Potmesil through private
communications arid computed the camera parameters. It was
not applied to 3D measurement, and therefore no accuracy
results. were available. Sumlar results are obtained by Strat
[24].

Category III—~Tw0-Plane Method See [13] and [19] for
example.

Advantage Only linear equations need be solved.

Problems: 1) The number of unknowns is at least 24 (12
.. for each plane), much larger than the degrees of freedom. 2)
The formula used for the transformation between image and

object coordinates is-empirically based only. ,

The .two-plane methed developed by Martins et al. [19]
theoretically can be applied in general without having any
restrictions on the extrinsic camera parameters. However, for

the experimental results reported, the relative orientation -

between the camera coordinate system and the object world
coordinate system was assumed known (no relative rotation).

In such a restricted case, the average error is about 4 mil with a

distance of 25 in, which is comparable to the accuracy
obtained using the proposed technique. Since the formula for
the transformation between image and object coordinates is
empirically based, it is not clear what kind of approximation is
assumed. Nonlinear lens distortion - theoretically cannot be
corrected. A general calibration using the two-plane technique
was proposed by Isaguirre ef al. [13]. Full-scale nonlinear
optmnzatxon is needed No experimental results ‘were - re-
ported.

Category 1 V—Geometrzc Technzque See [8] for exam-
ple.

Advantage: No nonlinear search is needed.

Problems: 1) No lens distortion can be considered. 2)-

Focal length is assumed given. 3) Uncertalnty of image scale
factor is not allowed.

Fischler and Bolles [8] use a geometric construction to
derive direct solution for the camera locations and orientation.
However, none of the camera intrinsic parameters (see Section
II-C2) can be computed. No accuracy results of real” 3D
measurement was reported.




: .. CALIBRATION USING A Two-STAGE TECHNIQUE

In the following, an overview is first given that describes
the strategy we took in approaching the problem. After the
overview, the underlying camera model and the definition of
the parameters to be calibrated are described. T hen, the
calibration algorithm and the theoretical derivation and other
issues will be presented. For those readers who would like to
have a physical feeling of how to perform calibration in a real
setup, first read ‘‘Experimental Procedure,”” Section IV-A1.

A. Overview’

Camera calibration entails solving for a large number of -
calibration - parameters," resulting in. the classical approach. .

mentioned in the Introduction that requires large scale nonlin-
ear search. The conventional way of avoiding this large-scale
nonlinear search is to use the approaches similar to DLT
described in the Introduction that solves for a set of parameters
(coefficients of homogeneous transformation ‘matrix) with

linear equations, ignoring the dependency between the param- -

eters, resulting in a situation with the number of unknowns
greater than the number of degrees of freedoms. The lens
- distortion is also ignored (see the Introduction for more
detail). Our approach is to look for a real constraint or
equation that is only a function of a subset of the calibration
parameters to reduce the dimensionality of the unknown
parameter’ space. It turns out that such constraint does exist,
and we call it the radial alignment constraint (to be described
later). This constraint (or equations resulting from such
physical constraint) is only a function of the relative rotation
and translation (except for the .z component) between the
camera and the calibration points'(see Section II-B for detail).

parameters), there is 4 simple and efficient way of computing

them. The rest of the calibration parameters (called group IT .

parameters) are computed with normal projective equations. A
-very good initial guess of group I parameters can be obtained
by ignoring the lens distortion and using simple linear equation
- with two unknowns. The precise values for group II paramie-
ters can then be computed with one or two iterations in
minimizing the perspective equation error. Be aware that when

single-plane calibration points are used, the plane must not be -

exactly parallel to image plane (see (15), to follow, for detail).

Due to the accurate modeling for the image-to-object
transformation described in the next 'section, subpixel accu-
racy interpolation for extracting image coordinates of calibra-
tion points can be used to enhance the calibration accuracy.to
maximum. Note that this is not true if a DLT-type linear
approximation technique is used since ignoring distortion
results in image coordinate error more than a pixel unless very
narrow angle lens is used. One way of achieving subpixel
accuracy image feature extraction is desctibed in Section Iv-
Al. :

B. The Camera Model

This section describes the camera model, defines the
calibration parameters, and presents the simple radial align-

®
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1. THE NewW APPROACH T0 MACHINE VISION CAMERA -* +

zw

v
=

P(x,y,2)
or P(xw, yw, zw)

Fig. 1. Camera geometl}ll with perspective projection and- radial lens

distortion.

.ment principle (tb be described in Section II-E) that providves
the original motivation for the’ proposed technique.” The’

camera model itself is basically the same as that used by any of
the techniques in Category I.in Section I-B, f

1) The Four Steps of Transformation from 3D.'W0rld
Coordinate to Camera Coordinate: Fig. 1 illustrates the
basic geometry of the camera model. (Xws Yw» Zy) is the 3D
coordinate of the object point P in the 3D world coordinate

system. (x, ¥, z) is the 3D coordinate of the object pdint_P in

o e \SEC ) ‘ . the 3D camera coordinate system, which is centered at point
Furthermore, although the constraint is a nonlinear function of al

the abovementioned calibration parameters (called group I

O, the optical center, with the z axis the same as the optical

axis. (X, Y) is the image coordinate system centered at O; .
(intersection of the optical axis z and the front image plane)

and parallel to x and y axes. f is the distance between front

- image plane and the optical center. (X, Y,) is the image
coordinate of (x, 'y, z) if a perfect pinhole camera model is’
used. (X, Y,) is the actual image coordinate which differs

from (X,, Y,) due to lens distortion. However, since the unit
for (X, Yj), the coordinate used in the computer, is the

number of pixels for the discrete image in the frame memory, .
additional parameters need be specified (and calibrated) that

relates the image coordinate in the front image plane to the
-computer image coordinate system. The overall transforma-
- tion from (X, Y, Zw) to (X, Y;) is depicted in Fig. 2. Step 4

is special to industrial machine vision application where TV
cameras (particularly solid-state CCD or CID) are used. The
following is the transformation in analytic form for the four
steps in Fig. 2. o

- Step 1. Rigid body transformation from the object world
coordinate system (x,,, y,, Zy) to the camera 3D coordinate

system (x, y, z)

N K
Il
x
<
b3
+
)\3




' :,'A(x,;, Y 24) 3D world coordinate
ah
v
Step 1

Rigid body transformation from (x,, y,. z,) t0.(x, y, 2)
- Parameters to be calibrated: R, T

v

(x,¥,2) 3D camera coordinate system
v

Step 2
. Perspectlve projection with pin hole geometry
) Parameters to be calibrated: f

v

(X, Y,) Ideal undistorted image coordinate

_ v
. - . Step3

: . Radial lens distortion
Parameters to be calibrated: &, «;

v

(X, Yp) Distorted 'image coordinate

v
"Step 4
TV scanning, Sampling, computer acqmsmon
Parameter to be calibrated: uncertainty scale factor s, for image
X coordinate’ .

v

X Yp Compﬁtér z-"mage coordinate in framé me;)iéry E

Fig. 2. Four steps of transformation from 3D world coordinate to computer image coordinate.

where R is the 3 X 3 rotation matrix ‘ . _ - Step 2 Transforma‘tibn'from 3D ‘ca_mera coordinate (x,
: o T - . ¥, z) to ideal (undistorted) image coordinate (X, Y.) using

rorpr| : perspective projection with pinhole camera geometry

R=|\ryrsrs| _ - (@) S R o :

, ‘ x R
r7 Ig Iy ‘ . , Xu=_f;._ . o (4?1)

and 7 is the translation vector ' _ ' o
yoo ’ - '—f— - 4b)
T : o The parameter to be calibrated is the effectwe focal length f

Step 3 Rad1a1 lens distortion is
The parameters to be calibrated are R and 7.

Note that the rigid body transformation from one Cartesian BT _Xd‘+ D.=X, ' (5a)
coordinate system (Xws Yws Zw) tO another (x, ¥, z) is unique if ' . o ' .
the transforxiatlon is defined as 3D rotation around the gngm : Y +D =Yy : -(59)
(be it defined as three separate rotations—yaw, pitch, and roll— where (X, Y,) is the dxstorted or true 1mage coordmate on the
around an axis passing through the origin) followed by the 3D 1mage plane and
. translation. Most of the existing techniques for camera
- . calibration (e.g., see Section I-B) define the transformation as : - Dy=Xg(ky 12+ irt+ 0 0)

translation followed by rotation. It will be seen later (see ‘
Section II-E) that this order (rotation followed by translation)
is crucial to the motivation and development of the new . o
calibration technique. - . - _ _ ‘ r=NX22+Y2%.

'Dy’:"; Yd(K1r2+K2r4+ c )




length and the scale factor in

. direction is just the same as

The parameters to be calibrated are distorti
~The modeling of lens distortion can be found in [18]. There
~are two kinds of distortion: radial and tangential. For each
kind of distortion, an infinite series is required. However, my.
‘experience shows that for industrial machine vision' applica-
. tion,’ only' radial distortion needs to be considered, and only
one term is needed. Any more elaborate modeling not only
would not help but also would cause numerical instability,
Step 4: Real image coordinate
image coordinate coordinate (X, Yy) transformation

(62)
(6b)

‘ szsxdx,_le"' Cx
Y=d;ly,+c,
Where

X5 Y7) row and column _numbers of the image pixel in
computer frame memory, ' '

(Cuy Cy) row and column numbers  of the center of
computer frarme memory, (6¢)
\\ . .
/=g, N 6d)
x x ]V}'x

d, center to center distance between adjacent sensor

elements in X (scan line) direction, (6e)
d, center to center distance between adjacent CCD
' sensor in the ¥ direction, ' (6D
N, number of sensor elements in the X direc-
. tion, - o o K (6g)
Ny, number of pixels in a line as sampled by the

computer. ' (6h)

The parameter to be calibrated
factor s,. — , : ; -

- To transform between the computer image coordinate (in
 the forms of rows and columns in frame buffer) and the real
-i_magc‘cdordinatc, obviously the distances between the two
 adjacent pixels in both the row and coltimn direction in the
frame buffer mapped to the real image coordinates need be
used. When a vidicon camera is used where both stich
' distances are not known a priori, the multiplane (rather than

is the uncertainity image scale

Vo single plane) calibration technique described in this paper must

be used. However, the scale in ¥ is absorbed by the focal
length since focal length scales the image in both the x and y
. directions. Therefore, d, (6b) should be set to one while the
" comiputed focal length f will be a product of the actual focal
Y. Also, N 'and Np in (6d)
should be set to one since they only apply to CCD cameras,

" Note that if a vidicon ‘type camera is used, the sensor
. element or pixel mentioned earlier should be regarded as each
individual resolution element in the receptor area -with the
tesolution being determined by the sampling rate. If a solid-
state CCD or CID discrete array sensor is used and if full
.- resolution is .used, since the image is scanned line by line,
~obviously the distance between adjacent pixels in the ¥
lirect; d,, center to center distance
between adjacent CCD sensor elements in ¥ direction,
“Therefore, (6b) is the right relationship between Yyand Y. If
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only the odd or the even field is used, thén"dylis 'twi_cie the
éenter—to-center distance between adjacent CCD sensor ele-
ments in the Y direction. The situation in X is different.
Normally, in TV camera scanning, an analog waveform is
~generated for each image line by zeroth-order sample and
hold. Then it is sampled by the computer into Ny, samples.
Therefore, one would easily draw the conclusion that

XNy
X="0F
d N,

Normally, manufacturers of CCD cameras supply informa-
tion of d, and d; (defined in (6e) and (6f)) to submicron
accuracy. However; an additional uncertainty parameter has to
be introduced. This is due to a variety of factors, such as slight
~ hardware timing mismatch between image acquisitionhard-

ware and.camera scanning hardware, or the imprecision of the
timing of TV scanning itself. Even a one-percent difference
can cause three- to five-pixels error for a full resolution frame.
Our_experience with the Fairchild CCD 3000 camera shows
that the uncertainty is as much as five-percent. Therefore, an
unknown parameter s, in (6a) is introduced to accommodate
this uncertainty, and to include it in the list of unknown
parameters to be calibrated, multiplane calibration technique
described in this paper should be used. However, there are a
 variety of other simple techniques one can use to determine
this scale factor in advance (see Lenz and Tsai [28]). In this
case, the single plane calibration technique suffices. The issue
of (G, C,) will be discussed later (see Note at end of paper).

" C. Equ'aﬁons Relating the 3D World Coordinates to the
2D Computer Image Coordinates ' :

By combining the last three steps, the (X, Y) computer

_ coordinate is related to (x, », z), the 3D coordinate of the

object point in camera coordinate system, by the following
equation: S o

-

. ; |
sx‘ldx’X+Sx‘1d;Xfc1'r2=f— (7a)
: z .
3 , o,
d;Y+d, Yigrr=f2 (7b)
' z
where
r=\(s;1dX)21(d, Y ).
‘ . v : .
Substituting (1) into (7a) and'(7b) gives
‘ : _ - 'rlxw-i-rzy,;,+r3zw+ T,
ST X450 X2 = :
R "‘ “ _fr7xw+rsyw+r9zw+ T,
| (82)
N FaXy +Fs Y+ Z,+ T,
d)Y+d, Yigri=f 2 5wt Ts > (8b)

T1Xy+ s Yyt 1oz + T,

where

r=\/(sx‘1d);X)2+b(dy‘ Y)?.
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" The parameters used in the transformatlon 1n Frg 2 can be

categorized into thé following two classes: - :
1) Extrinsic Parameters: The parameters in Step 1in F1g

"~ 2 for. the transformation from 3D object world coordinate

system to the camera. 3D coordinate system ceéntered at the
optical center are called the extrinsic parameters. There are
six extrinsic parameters: the Euler angles yaw 0, pltch ¢, and

" tilt ¢ for rotation, the three components for the translation

vector T. The rotation matrix R can be expressed as function

~of 6, ¢, and v as follows:.

* cos Y cos 6
—siny cos ¢ +cos { sin 6 cos ¢
sin ¥ sin ¢ + cos \I/ sin 6 cos ¢

R=

2) Im‘rmszc Parameters The parameters in Steps 2-4 in
Fig. 2 for the transformation from 3D object coordinate in the

_camera coordinate systemi to the computer.image coordinate

are called the intrinsic parameters. There are six intrinsic
parameters: '

f effecuve focal length, or image plane to prOJec— :
tive center distance, -

ky ~ - lens distortion coefficient,

Sy uncertainty scale factor for x, due to TV camera

- scanning and acquisition timing error,
(Cs, C)) computei image ¢ coordrnate for the origin in the
' 1mage plane.

D. Problem Defmztzon

The problem of camera calibration is to compute the camera
intrinsic and extrinsic parameters based on a number of points
whose object coordinates in the (X, Yw, Zy) coordinate system
are known and whose image coordmates (X 'Y) are mea-
sured.

E. The New Two-Stage Camera Callbratzon Techmque
Motivation

The orrgmal basm of the new techmque is the followmg four
observatrons

Observation I: Since we assume that the d1stort10n is
radial, no matter how much the distortion is, the direction of

_the vector O;P, extending from the'origin*O},_in ’th’e'irnag'e

plane to the image point (X4, Y,;)' remains unchanged and is
radially alrgned with the vector P, P extending from the
optical axis- (or, more precisely, the pomt P, on the optlcal
axis whose z coordinate is the same as that for the obJect point
(x, ¥, 2)) to the object point (x, ¥, z). This is illustrated i in Fig.
3. See Appendix I for a geometric and an algebraic proof of
the radial alignment constraint (RAC).

Observation II: The effective focal length f also does not
influence the d1rect10n of the vector’ O:P; iPg, since f scales the
image coordinate X; and Y, by the same rate. ‘

Observation III: Oncé'the obJect world coordinate system

#--~." ig rotated and translated in x and v as in step 1 such that O;Pyis

%" ~allel to P,,P for every point, then translation in z will not

r the d1rectron of OP; (this comes from the fact that,

'techmque in their applications,

accordmg to (4a) and (4b), z changes X and Y by the same -
scale, so that O;P,//O;Py).

Observation IV: The constraint that O,P, is parallel to
PP for every point, being shown to be independent of the
radial distortion coefficients «; and k,, the effective focal
length f, and the z component of 3D translation vector 7, is
actually sufficient to determine the 3D rotation R, X, and ¥
component of 3D translation from the world coordinate system
to the camera coordinate system, and the uncertainty scale
factor s, in X component of the image coordinate.

sin Y cos 0 —sin@ .
cos Ycosp+sinysinfsing cosfsing | . )
—cosysing+sinysinfcos¢d cosbcose

Among the four observations, the first three are clearly true,
while the "last one requires some geometric intuition and
“1mag1nat10n” to establish its Vahdrty It is possible for the
author to go into further details on how this intuition was
reached, but it will not be sufficient for a complete proof.
Rather, the complete proof will be grven analytically in the
next few sections. In fact, as we w111 see later, not only is the
radial ahgnment constraint sufficient to determine uniquely the
extrinsic parameters (except for T;) and one of the intrinsic
parameters (s,), but also the computation entails only the
solution of linear equations with five to seven unknowns. This

means it can be done fast and done automatically since no

initial guess; which is normally requlred for nonlinear
optimization, is needed.

F. C_alibrating a Camera Using a Monaview Coplanar
Set of Points

To aid those readers Who intend to 1mplement the proposed
the presentation will be
algorithm-oriented. The ‘computation procedure for each
individual step will first be given, while the derivation and
other theoretical issues will "follow. "Most technical details
appear in the Appendices. - - :

Fig. 4 illustrates the setup for cahbratmg a camera usmg a
monoview coplanar set of points. In the actual setup, the plane
illustrated in the figure is the top surface of a metal block. The
detailed descrlptron of the physical setup is given in Section
IV-Al. Since.the calibration points are on ‘a common plane .
the (x,,, Yw, Z3) coordinate system can be chosen such that z,,

= 0 and the origin is not close to the center of the view or y
axis of the camera coordmate system. Since the (X, Vw, Zw) 18

_ user-defined and the origin is arbitrary, it is no problem setting

the origin of (X, Yw, Zw) to be out of the field of view and not
close to the y axis. The purpose for the latter is to make sure
that 7, is not exactly zero, so that the presentation of the
computation procedure to be described in the following can be
made more unified and simpler. (In case it is zero, it is quite
straightforward to modify the algorithm but is unnecessary
since it can be avoided.)

1) Stage 1— Compute 3D Orientation, Posmon (x and
y): :
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P03(0,0,2)

P(x,y,=)
- or  P(xw,yw,zw)

Fig. 3. Tilustration of radial alignment constraint. Radial dis;ordon does not
alter direction of vector gom origin to image point, which leads to OP,//
OF;//0,P. ' ‘
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" Fig. 4. Schematic diagram. of experimental setup for camera calibration

using monoview coplanar set of points.

. @ Computethe distorted image coordinates (X, Y):

 Procedure:

i)

R

Grab a frame into the computer frame memory.

‘Detect the row and column number of each calibra-

i)

tion point /. Call it (X, Yz). -~ -~ - -
Obtain Ny, Ny, d ¢+ dyaccording to (6¢)-(6h) using

- information of camera and frame memory supplied
-+ by manufacturer. - - . - S

iif)

Take (Cy, C,) to be the c¢1'1ter'pixlel of frame mémo'ry
(see i) in “‘Derivation and discussion”’ below). .

" ~Compute (Xy, Yi) usiﬁg_(ﬁé) and (6b):

Xi=5;1d(Xp— Cy)
1, -- -,. N, and N is the total number -of

. paper):
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.
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calibration points. See /i) in ‘‘Derivation and discus-
sion below concerning s,. . = ..

Derivation and discussion (also see Note at end of

i) Issues concerning fmage origin: Currently, we
do not include the image center (C,; C;) in the list of camera
parameters to be calibrated. We simply take the apparent

«center of the computer image frame buffer to be the center.

The results of the real experiments show that when a full
resolution CCD camera is calibrated with the proposed
technique, it is so well equipped as to be able to make 3D
measurement with one part in 4000 average accuracy. To see

‘the consequence of having a wrongly guessed image center

when doing calibration, we intentionally alter the apparent
image center by ten pixels. The results of 3D measurement
still ‘is about as accurate, We have not ‘yet conducted
experiments with the image origin way off the apparent center
of the sampled image. While doing the experiments, we did
not take the cen‘terof_ the frame_memofy to be the center of the
sampled image or the image origin. It is often the case that
image acquisition hardware may have a slight timing error
such that the starting of each line may either be too early or too

_late, ‘causing the RS170 ‘video from CCD camera to be

sampled in the front or back porch (porch.is the blanking
interval between each line of active video). Similar situation
may occur in the vertical direction, but usually to a much
lesser extent. The user should observe the pixel values in the
frame memory,- and see if there are any blank lines on the
border. For example, if there are éight blank lines on the left
border and five blank lines on the top border, the image
origin should be taken as the center in the frame’ memory offset
(added) by (8, 5), which is the case we encountered in the real
experiments described in Section IV. ‘ .
i) Issues concerning uncertainty scale factor s,:

Unlike the ‘multiplane case, the single plane case does not |

calibrate the scale factor s,. In €) of Section IV-Al, it is
explained in what situation one does not need to calibrate s,

- and how to get a priori knowledge of s,. See also Step 4 in the

transformation from 3D world coordinate to camera coordi-
nate in Section II-B. T D
b) Compute the five unknowns T; I, T; I, Ty‘lTx,_

T;‘n,, T;lrg. . ,

Procedure: For each point i with (x,;, Ywis Zui)s (Xai
Y4) as the 3D object coordinate and thg:»co_rreSpOnding image
coordinate (computed in a) above), set up the following linear
equation with T; r, T y“i‘z, T;‘Tx, T; s, and Ty‘l_r5 as
unknowns: : R

-Ty‘ll‘l
T;lrz
Ty‘l T,

Ty‘lr,,,
Ty_lr5

(Yaxwi Yadw Yo —Xagxy ~ XYl =Xg. (10)

With N (the number of object points) much larger than five, an
overdetermined system of linear equations can be established
and solved for the -five unknowns Ty‘ Ir, Ty‘lrz, Ty“Tx,
’Ty‘lr4, and T;lrs.f R - .
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" Derivation and ‘uniqueness of solutions: Equation
(10) follows simply from the radial alignment constraint O:P,
//P,P depicted in Fig. 3 and mentioned in Section: II E. The
detailed derivation is given in Appendix I. Obv1ous1y, the

. matrix linear equation in (10) has a unique solution if and only

if the coefficient matrix has full column rank, or equivalently,
all columns are linearly independent. Appendix II gives a
detailed proof that the coefficient matrix has full column rank
for N much larger than five.

¢) Compute (ry, -+, ro, Ty, T,) from (Ty“‘rl, Ty“rz,
T; T, Ty lry, T 1r5) ,

1) Compute |T,| from T Ir, T“rz, T*‘Tx,

T 17’4, T Irs: 5. o

: Procedure Let C bea?2 X 2 submatrlx of the
rotation matrix R; i.e., C is defined as

_|rf -rz’ _ r_l/T;v /T, :
©= [r; r5’] = [r4/T o1, |- D

N
IF (not a whole row or column of C vamshes), THEN compute
T2 with -

—[S2=A(riri—rr])?1V2
Sl ( r;)?] 12)
’ 2(r1r -r r')2
where S, = r/* + r’2 + r;? 4+ r/% Eise (this rarely
happens, if ever), compute T2 with S ‘
B To=(rf2 41" (13)

where 7/, r ‘are the elements in the row or column of C that
do not vamsh .

Derzvation and uniqueness of solution: The deri-
vation of the computation procedure actually follows the proof
of uniqueness. Notice that the elements in (11) for C are
computed in b) and are unique. Furthermore, C in (11) is
actually the upper left 2 X 2 submatrix of the orthonormal
matrix (of the first kmd) R scaled by 1/T,. The following
lemma puts a restriction on how one can scale the 2 X.2

'submatrlx of a3 X 3 orthonormal matrix Whlle stlll

maintaining orthogonality.

Lemma I: There do not exist two 3 X 3 orthonormal
matrices that differ in their 2 X 2 submatrix by a scale factor
other than "+ 1. Equivalently, if the 2 X 2 submatrix of an

_orthonormal matrix is given except for the scale factor then

that scale factor is unique except for the sign. -
The proof for Lemma I is given in Appendix III. Note that C

(the 2 X 2 submatrix of R) is fixed in b) and had there been .-

two or more solutions for | 7|, then from (11), there would be
two or more scale factors ry, ry, rs, rs, which contradicts

. Lemma I. Therefore, Lemma I clearly establishes the unique-

ness of | T, |. Equation (13) is rarely used, if ever, as discussed

in Append1x IV. The formula (12) is derived in Appendix IV.

Actually, as described -in Appendix IV, the procedure for
deriving (12) yields two expressions for | 7, %|. From Lemma 1
only one is valid. As-for why (12) is chosen, a theoretical
analysis is given in Appendix IV. ’
2) Determine the sign of T,:
Procedure:

. i) Pick an object point.i whose computer image
coordinate (X5, Yp) is away from the image
-~ center (Cy;, Cy); the object world coordinate is
 (Xwis Ywis Zwi)-
ii)  Pick the sign of 7} to be + 1.
iii) = Compute the followmg

=(T, 1’1) Ty fz—(T ) -
r4=(Ty— r4) . Ty
=(T;'rs)* T, Tu=(T;]'Ty) - T,

Xx=rXy+nyy+ Ty y=rxy+rsy,+T,

where T Iy, T; ry, T;‘Tx, T;‘r4, and T;1r5
are determmed 1n b).

iv) - ¢ ((x and X have the same sign) and (y and ¥
have the same sian)), THEN sgn (T,) = +1, ELSE
sgn (T,) =

Derzvatzon and uniqueness of solution: Although

‘T2or|Ty|is determined uniquely in c1) above, 7 can still

assume + or — signs. Note that since (10) computes T r,,
T, lr,, T T, T; lpy, T; lrs, reversing the sign of 7,
reverses the signs of ri, 2, r4, rs, and T. Recall that the hnear
equation (10) used to solve for Ty ', T; Iy, T; Ty T,
T, 'rs was derived from the radial alignment constraint O.P;//
P,.P,or (Xz, Y))//(x,), where x = rix,, + r»y, + Tyand
¥y = X, + rsy, + T,. This sign reversal of T}, causes (x, ¥)
to become —(x, ¥), which is still parallel to (Xy, Yy),
although pointing in the opposite direction. However, (4a) and
(4b) say that not only is (X, Yu)//(X,, Y,)//(x, y), but also
since f and z are both positive, X, and x have the same sign,
and Y, and y have the same sign (this can also be seen by
ohserving the simple geometry in Fig. 3). Therefore, only one
of the two signs for T}, is valid and can be determined by using
the procedure descnbed
_ 3 ) Compute the 3D rotatlon matrix R, orry, 1y, *
Iyl :
Procedure.'

i)’ Compute the following:

:(T;lfl) M Ty rzé(T;lrz) . Ty

r4,=(T;1r4) - T,

o

=Ty T, Te=(T;'T) - T

where Ty 'ry, T; Iy, T; Ty Ty‘l_r4, Ty“rs are
determined in b) above
ii) Compute R with the following formula:

ry ry (1—"%—"%.)1/2

R=|ry rs s(l—r2—r22 (14a)
7 T3 Iy :
where s = —sgn (r\ry + rars). sgn () signifies '

the sign of its argument. r;, rg, rs are determined
from the outer product of the first two rows using
the orthonormal and right-handed property of R.
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iif) . -Compute the euec't ve focal lengm f using (15) in
d), to fo llow ( < 0), THEN
_ n i‘2 v ,-*(1——r2—-r2)“2 ‘ :
R=}r, rs -s(- r2 2)1’2 . . (14b)
—I —1rg : Iy ’

Derivation and uniqueness of solution: Since
T;'r, T ', T;'re, T 'rs are uniquely determined in b)
and T, is uniquely determined in c-1) and -2), obviously, r;,
ry, Ts, rs are uniquely detérmined. Note that ry, r, are the

“elements in the upper 2 X 2 submatrix of rotation matrix R.
- The problem becomes how to compute the rest of the

elements uniquely in-R. This is provided by the followmg
lemma:

Lemma 2: Given 2 X 2 submatrix of a3 X 3 orthonormal
matrix of the first kind,? there are exactly two possible

solutions for the orthonormal matnx They are given in (14a)

and (14b). .
Proof The prockof Lemrna 2 is given in Appendix V

Now we explain why the procedure described earlier for '

choosmg the one among (l4a) and (14b) g1ves the correct and
unique solution.

~ In (14a) and (14b), only the first two rows are given

explicitly in terms of the glven quantities ry, 72, 14, I's. From"

the orthonormal property of R and the right-handed rule (i.e.,

determinant of R is 1, not — 1), ry, rg, and ry are easily and
uniquely computed from the first two rows. Only one among
(14a) and"*(14b) is valid. This follows from the fact that by
reversing the s1gn of z for all points in the camera 3D
coordinate system, i.e., (X, ¥, z) = (x, y, —z), all points are
still coplanar (note that-this is not perm1551ble for noncoplanar
points since the mirror image of object points with respect to g
= 0 plane reverses the right-handed rule). However, since T},
is not yet computed in stage 1, one cannot compute the z
coordmate( I1Xy + Isyw + 75°0 + Tz) yet. From' (4a) and
(4b), it is seen that reversing the sign of z also reverses the 31gn

- of f. Therefore, the easiest way to select the valid one among

the two solutions in (14a) and (14b) is to use the linear
equation in d) below for cornputing approximation of f and T,
by ignoring distortion. The wrong one will yield negative f
and the right one will yield positive f. Note that there is no
need to worry about distortion just for deciding which among
the two cases would yield positive f, since the actual quantity
of fis not needed for this purpose. This is always confirmed

by the experimental results, as to be seen in-Section IV,

2) Stage 2—Compute Effective Focal Length, Dzstor—
tion Coefficients, and z Position:

d) Compute an approximation of. f and T by ignoring
lens distortion:
Procedure: For each calibration pomt i, establish the
following linear equation with fand T, as unknowns:

i —d, Y] [;] =‘w,~dy'Y,- sy

2 Orthonormal matrix of the first kind, by deﬁmnon ‘has determinant +1,

_ as opposed to orthonormal matrix of the second kind, whose determinant is

—1.

04T,

Yi=TXyitTsYyi+re *
Wi=r1Xyi+r3Ywi+7r * 0.

With several object calibration points, this yields an overdeter-

mined system of linear equations that can be solved for the

unknowns f and 7. The calibration plane must not be exactly
parallel to image plane, otherwise (15) becomes linearly

' dependent.

Derivation: Equatlon (15) is derived by setting «; to
zero in (8b). Since R, Ty, and T have all been determined at
this point, y and w are fixed. Thus (15) is a linear equation
with f and T, as unknowns. Note that although (8a) can give
rise to a’'similar equation, it is redundant. To solve for an

" approximation of f and T, using (15), an overdetermined

system of linear equation using a number of points can be

 established, and a least square solution is easily obtained. The

proof for uniqueness of f and T, can be found in Tsai [29].
e) Compute the exact solution fo'r Sy Ty k52

Procedure: Solve (8b) with f, T,, k; as unknowns
using standard optimization scheme such as steepest descent.
Use the approximation for f and T, computed in d) as initial
guess, and zero as the initial guess for ;.

Derivation and uniqueness of solution: With R, T,
and T, have all been determined previously, (8b) becomes a
nonlinear equation with f, T, «; as unknowns. Usually only
one or two iterations are needed.

G. Calibrating a Camera Usmg Monoview Noncoplanar
Points

When s,, the uncertainty scale factor in X, is not known a
priori, the calibration techniques using a noncoplanar set of
calibration points should be used. The same pattern used in
coplanar case can be used, except that it is moved to several
different heights by a z stage. One can of course use a
calibration' pattern that is noncoplanar physically, but it is
much easier to fabricate a coplanar set of calibration points
than noncoplanar points whose image coordinates must be
known accurately Since z,, is no longer identically zero, the
linear matrix equation derived from the RAC yield solutions
for seven unknowns instead of five, making both the computa-
tion and proof of uniqueness in stage 1 less tricky than the
coplanar case. Just like the monoview coplanar case, the
origin for the object world coordinate system should be set up
away from the origin and the y axis of the cémera coordinate
system.

I) Stage 1——Compute 3D Orzentatzon Position (x and
y)-and Scale Factor:

a) Compute image coordinate (X ;, Y ;), where (X- ‘,

Y ) is defined the same as the (Xy, Yy) in (6a) and (6b)
except that s, is set to 1 (that is, the uncertainty scale factor
is taken to be a perfect 1):

Procedure: The procedure is the same as a) for stage
1 in Section II-F except that s is taken to be one. s, is absorbed
into the unknowns for the linear equations in b) below and will
be computed explicitly in c-3).

b) Compute T;'s,ri, T;'sura, T tsers, T 'sxTy



“' :‘zw,) as the 3D world coordinate and (X
- image coordinate computed in a) above set up the followmg

Y gxw Yvw Y gzw Y

- ry’

ATILE CAMERA CA_LIB_R:AT;, N TE

;‘r4, T r5, T r5 O
Procedure For each’ cahbrauon pomt i w1th (xw,, yw,,
Y,) as the modified

linear equation with. T ls,ry, T g1, T g7, T sx "
T; I, T, 'rs, and T, 'rs as unknowns '

=X pXwi

T, tsen
T lser
T sers

. T;ISXTX
T_1r4
T 17'5
T 1]'5

—Xé,'ywi _Xdljzwi]

=X;. (16)

With N (the number of object points) much larger than seven,
an overdetermined system of linear equatlons can be estab-
lished and solved for the seven unknowns T sxrl, T Lsra,
T;lsers, T 5, Ty, T;'re, T lrs, and T 1r6

Derzvatzon and unlqueness of solutions: Equation
(16) is derived by following exactly the same procedure as
coplanar case in using the radial alignment constraint but with
Z Dot set to zero (see Appendix I for detail). Obviously, the

o matrix linear equation in (16) has a urique solution if and only
- if the coefficient matrix has full column rank, or equlvalently,

all columns are linearly independent: Appendix II contains a

" detailed proof that the coefficient matrix has full column rank

for N much larger than seven.
c) Compute (ry, =, ry, Toy Ty) from T 1erl,
T, g7, T, Ysers, T L5 Ty, T, dry, T; Lys, T; 1r5 The
der1vat1on and proof of uniqueness. of solutlon are straughtfor—
ward, and can be found in Tsai [29].
) 1) Compute IT | from T s, T sxrz, T; Lsrs,
T; YTy T Iy, Ty rsy T, lrgs '
v Procedure Let a,, i=1, , 7 be deﬁned asq =
T sxrl, a = T>1sry, a3 = Ty Sy, ag = T, . Ty, as =
T 1r4, as =T;'rs,a7 =T Irs. Note that all the a;fromi =
1, , 7 are determmed in b). Compute | 75| usmg the
followmg formula:
| Tyl=(a§+a§+a§)‘l/2.v an
2) Determine the'sign of Ty: The procedure, deriva-
tion, and uniqueness argument are the same as those for the
coplanar case.
3) Determine sy:
Procedure: Use the following formula to compute
Syt ‘ '

se=(al+a2+a3)"?| T,|.

4) Compute the 3D rotation matrix-R, orry,ry -,

with the following formula:

n=a, - T,/sy n=ay- T,/s, r=a; T,/s,

Procedure: Compute ry, ry, 3, Fay I's, Ts, and Ty

where ¢;, i = 1, , 7 are defined in (1) and are the seven
variables computed in b)

Givenry, i = 1, , 6, whxch aré the elements in the ﬁrst
two rows of R, the thlrd row of R can be computed as the cross
product of the first two rows, using the orthonormal property
of R and the right-handed rule (determmant of R = 1, not
=1D.

Derivation and uniqueness: The derivation simply

follows from the definition of g; in b). The uniqueness follows

from the fact that the formula is explicit and that given two
rows of a3 X 3 orthonormal matrix with determinant + 1, the
third row is always unique.

2) Stage 2—Compute Effective Focal Length, Distor-
tion Coefficients, and z Position: _

a) Compute of an approximation of f and T, by
ignoring lens distortion: -The procedure, -derivation, and
uniqueness are exactly the same as that for the ‘coplanar case.

b) Compute the exact solutzon for f, T, k2 This again
is the same as the coplanar case.

H. Multzple Viewing Posmon Calzbratzon

When more than one view is taken at different position and
orientation relative to the calibration points with a single
camera, the extrinsic parameters of the camera differs from
view to view, but the intrinsic parameters remain the same.
We can exploit this when using multiple views by choosing the
set of intrinsic parameters that optimizes the global consist-
ency between camera model and observations. The disadvan-
tage that quickly comes to mind is the increase of dimensional-
ity in parameter space, making the computation less suitable
for automated robotics application. However, because the new

- two stage technique computes most of the extrinsic parameters

in‘stage 1, the disadvantage of increase in dim’ensiohality for

' parameter space no longer prevaﬂs Due to the limit of space,

the technique using multiple view is not described here See
Tsai [29] for deta11 ‘

I. ACCURACY ASSESSMENT

It is difficult to obtain high accuracy ground truth for
camera calibration parameters that can serve as absolute
reference. Therefore, we will assess the accuracy of the two-
stage camera calibration by how well it can sense or measure
the 3D World C

A. Three Types of Measures for Camera Calzbratzon

Accuracy

as

We will adopt the following three types of measures.
 Type I—Accuracy of 3D Coordinate Measurement
Obtained through Stereo Triangulation Using the Cali-

_brated Camera Parameters: The procedure is as follows.

1) Calibrate one camera using either coplanar or nonco-
planar points, monoview or multiview. If monoview calibra-
tion is used, repeat the calibration procedure for anether
camera rigidly connected with camera 1 (the purpose of the




second camera is to provide stereo triangulation capability to
be used later). ' - C - L

2) Acquire 2D image coordinates for a set of test points
whose 3D coordinates are known relative to the same 3D
world coordinate system used for the calibration points, using’
the camera (or cameras) in the same viewing position as for the
calibration. ,

3) Compute the 3D coordinates of the above test points in
the world coordinate system using stereo triangulation. If
multiview calibration was used, two views are sufficient for
stereo triangulation. If monoview calibration was used, then
since two cameras rigidly connected together in (1) were
calibrated, steréo triangulation can still be done. '

4) The accuracy of camera calibration is assessed by
comparing the difference between the known 3D coordinates
of the test points and the coordinates computed in (3). That,
comparison can be done either in the 3D world coordinate
system, or in the computed 3D camera coordinate system. We
will use the latter throughout this section because in 3D
camera coordinate™system, physical meaning can be easily
attached to the x, y, z coordinates. For example, z coordinate
is the depth, and x and y coordinate axes are parallel to X, Y
coordinate axes in the image plane. '

Type II—Radius of Ambiguity Zone in Ray Tracing:

As shown in Fig. 1, the calibration processtries to find
camera model parameters such that the ray. starting from the
optical center O, passing through the true image point P, (the
ray bends at Py éccording to the extent of radial distortion),
will eventually pass through the calibration object point P. Of
course, due to error, the ray will not exactly pass through P.
After the camera model is calibrated or reconstructed, this
path of ray in Fig. 1 can be back traced, that is, starting from

the optical center, the ray can be traced through the image -
point and “‘back ‘projected’’ into the object world passing -
through the object point P. One way of measuring the camera
calibration accuracy is the extent of ambiguity of error of this -
ray tracing in one view, which is the basis of Type I measure. '

As seen in Fig. 5, error of camera model reconstruction causes
the ray to miss the point P. Using Type Il measure in assessing’
camera calibration accuracy is to see how much the ray misses

“the object point P, To see the relationship between Type IT and -
I'measures, consider the fact that if the ray tracing can be done -

very accurately, then obviously with two views, the intersec-
tion of the two rays gives the 3D coordinate of the object point

P. Therefore, the accuracy of reconstructing the 3D coordi-

nate of P is a measure of the accuracy of camera calibration, -
which is the basis for the Type I measure just described. The
procedure is as follows. : ‘ _—

1) Calibrate the camera using a coplanar set of points on a
plane (called plane ¥ in Fig. 5). g

2) Setup a coplanar set of test points. whose 3D coordinates
in the object world coordinate system (in which the coordinate
of the calibration points are defined) are known, and the
position of the plane (called plane U in Fig. 5) on which the
test points reside is also known. Take one view.

3) For each image point P, on the test plane U, use the .

calibrated camera model in (1) to back project the ray from O
through Py and intersect with plane U at P’. The distance

plans U Ihold.ing teat
1

fted
calib%tion
points

Fig. 5. Radius of ambiguity zone is Type II measure for camera calibration
accufacy, P is ideal object point, and P’ is point where back projected ray
using calibrated camera model intersects with object surface plane U.

between P’ and P (the ideal point in plane U) is called the
radius of the ambiguity zone (as depicted in Fig. 5).

Type IlI—Accuracy of 3D Measurement: Since a cali-
brated camera may be applied to measure relative 3D
information instead of absolute 3D coordinate, e.g., dimen-
sional inspection of mechanical parts, it is useful to measure -
the goodness of camera calibration by how well the camera
can be used to perform dimensional measurement.

B. Accuracy Analysis Summary -

As explained earlier in this section, we assess the accuracy
of camera calibration by measuring how accurately the camera
measures the 3D world. The remainder of this section reviews
the formula of accuracy or error for camera calibration/3D

- measurement provided in Tsai [26] which will later be used for
the analysis of experimental results. It is important to note that -

the purpose. of this section is not to propose a new accuracy
results or to prove its validity. The accuracy analysis formula
is only to double check the numerical figures of the experi-
mental results.

C. Theoretical Upper Bound of Error for 3D
Measurement- TR '

It is shown in Tsai [26] that the error of 3D measurement of )
the x, y, z coordinate of a ‘feature point using stereo
triangulation is bounded above by

‘ 1 z | T 1
EITOT o < [(1+—%> —4- 14—
Ol S VeNN,) f 1NN, \' N;)
' 1 ) 1 z
+ + -
2N6N, 26N, S

R
8+ A 22)
]nnn o

where

8  effective image spatial quantization or the error of
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" _sion about § in the following), - o

“'Np -~ - total number of points used in calibration, - - .’

| 7] distance between the optical centers of the two
camera viewing stations,? ,

Ny number of views used in calibration (i.e., ‘one for

monoview calibration, two for multiple viewing

position calibration using two views, etc.),

L dimension of the image sensor chip, or more

generally the size of the active area in image plane

. scanned by the camera, o
Ag  target ambiguity in three-space (e.g., if the corner
" of a rectangular block is the target point, then the

edge break or the sharpness of edges determines the -

extent of ambiguity for the true location of the target
" point). - : .

Here it is assumed that for -single-plane -calibration, the
 calibration plate is sufficiently tilted with respect to the image

plane (at least 30°). For the experiments described below, all

the image coordinates are extracted with special interpolation
" algorithm that aims at subpixel accuracy. Therefore, 6 in the
above error formula is about one-half or one-third-of d,and d,
in (6€) and (6f). In Section IV-A1, d) contains more dé‘c_ails on
how the special interpolation technique is implemented during
experiments. : : R

" Equation (22) serves as the theoretical upper bound for the
error in Types I and II measures described in Section II-A.
The upper bound for the érror- of making dimensional
measurement is twice as much as that for a single feature

point. In all of the tests to be described -in Section IV the °

experimentally obtained accuracy measures of the camera
_calibration will be compared against the accuracy predicted by
the theoretical formula in 22). ~ R
"1) Effect of Number of Points on Calibration Accu-
racy: By .observing the expression for errore in (22), one

can see that there are two. groups of terms, one scaled by 1/

Ny, 1/ \/]\_’f, or 1/Ny, while the other not influenced by N, or
Ny at all. We shall call the former errote and the latter
ITO0poncalip- 1NEY are given in the following: - - g

eITor, —[ ! §+———-—~“ TS“ <1+—1'—>+ !
T | Voo S LN6N, N\ Ni/ 26N,
| +__.z] LA
CoVeN ST

zZ 2z o B
eITOl poncalib =~ ——— 0 + Aq. 24
; noncalib f ” Ts” ) q . ( )
By observing (23) and (24), one can seé that errorpencaiib
remains the same for either coplanar, noncoplanar, or multiple
viewing calibration, while errorca varies depending on Ny
‘and Nj. If, for instance, Np is large enough for coplanar
calibration, the accuracy should not be worse than that for the
noncoplzinar “or multiple viewing calibration. Again, the
calibration plate has to be sufficiently tilted for singlerlane

3 If only one camera station is involved, e.g., the setup for Type II measure

described in Section III-A, then || T3] is to be taken as the average depth of
~ calibration points from the lens center.

_estimated image feature location (see more discus-

-in Fig. 10). ' .

23)

calibration.” In this case,” eITOTeup < eITOTnofcalibs and -that
eTOTp = EITONponcatip A good indication ‘of whether the
nuimber of points is large enough is that the ratio erroreas/
ETTOT yogeatty Predicted using (23) and (24) is small. In all of the
tests to be presented in the next section, the number . of
calibration points Ny is at least 60. That is the reason why the
accuracy for all cases are good and that the single-plane
calibration performs just as well as multiple planes or multiple

viewing position calibration. If fewer points are used, the error-

can be predicted‘by (22), and the actual experimentation for
testing the effect of the number of points is part of list of our
future activity. ' ' :
‘ cee IV TEST RESULTS -

In this section, we will describe the procedure -and analyze
the results of two different tests of the two-stage camera
calibration technique: 1) monoview. single-plane calibration,

type of measure for calibration accuracy. is Type II; 2)

monoview multiplane multicamera measurement, type of
measure for calibration accuracy is Type I and III.

A. Test Results JSfor Monoview Single-Plane Calibration
1) Experimental Procedure: The procedure for Type I

. measure described in Section ITI-A is followed step by step to

compute the Type II measure. The first step, which is to
calibrate the camera, is described in greater detail here.
a) Description of the méchanical hardware of calibra-

tion and test points and the procedure for constructing it: -

The calibration and test points were created by impressing a
template of Letraset instant lettéring graphics sheet containing
16 black squares on the top surface of a steel block 2 in X 1.5
in X 0.5 in in size (see Fig..6). The corners of the 16 squares
are treated as calibration points, making a total of 64 points.
Only 60 points were chosen for the experiment due to defects
or blemishes in the squares (see Fig. 8, the square on the top
left corner is defected, leaving two points out) and the

- omissions in the process of obtaining 3D.coordinates of the

corner points needed for calibration leaving another two points
out, as indicated by the missing white dots on the two corners
of the twelfth block counting from left to right, top to botto‘m,,
b) The process of obtaining 3D world coordinates of
the calibration and test points: The 3D coordinates of the
corners of the squares, which will be used as input to the
calibration process, were obtained by using an X'Y micrometer
stage (0.1 mil resolution) and a Nikon 400 x ‘microscope.*
Because the corners for the instant lettering graphics template
are always rounded, it is necessary to measure the coordinate
‘of a humber of points along the edges of the square away from
the corners, and then extrapolate the edges to obtain the
grouhd truth for the corners which lie on the intersection of the
adjacent edges. -

c) How accurate should the 3D coordinates of the

calibration points be? To obtain calibration patterns that are

4 The process can bé automated by using a motor driven XY translation
stage and a TV camera hooked up to the microscope (such facility is very
common in the market). Since the same calibration pattern can be used again
and again, and the calibration process need not be done frequently to the same
camera, it is not important to worry about aufomating the’ process for
collecting 3D coordinates of calibration points.




Fig. 6. Steel block on top of which Letraset instant lettering graphics are-

impressed. Corners of black squares are calibration points.

highly accurate and easily prdcessed by the computer is not
easy. Therefore, one should consider how accurate the

calibration points must be to achieve a certain accuracy for-

calibration/3D measurement. Note that errorgpraton in (23) is
scaled by V6N !. Therefore, for a large number of points,
€ITOr calibration becomes negligible compared with er-
IOToncalibration- HOWEVer, (23) assumes that the error of calibra-
tion points is either comparable to image spatial quantization
error and random, or is much less than image spatial
quantization error irrespective of randomness. Therefore; if
there is any factor during the process of c'reating and
measuring the.3D coordinates of the calibration points that
would cause the error of calibration coordinates to be
nonrandom or systematic, that factor must be reduced to a
minimum such that the nonrandom error is less than the
desired final accuracy of 3D measurement. If the desired

measurement accuracy is of the order of 1 mil, then the factors.

such as flatness of the surface holding the calibration pattern
and the parallelism between the top and bottom of the surfaces
are the only factors that need to be controlled. All other factors
tend to give random error and can easily be made smaller than
image spatial quantization. It is important to keep the tolerance
for the flatness and parallelism at least one order of magnitude
tighter than the final goal of 3D measurement using the
calibrated camera; for example, if the final accuracy is desired
to be 1 mil, then the surface flatness and parallelism has to be
0.1 mil accurate.

d) Extraction of computer imuage coordinates for the
calibration and test points: Images of calibration and test

objects were acquired with a Fairchild CCD 3000 camera and

a Fuji 25-mm focal length TV lens, using the setup shown in
Fig. 7. The objects were illuminated using a fiber-optic
illuminator (any intense diffuse source would also work).
Computer image coordinates for calibration and test points
(corners of black Letraset squares) were extracted as follows.

1) Acquire a gray scale image (see Fig. 8).
2) Threshold the image to produce a binary image (see Fig.

9); the exact threshold value is not critical and could be

set by analysis of intensity histograms or some ad hoc
method (in the current work, the threshold was selected
manually).

.RA-3, NO, 4, AUGUST 1987 .

Fig. 7. Setup for camera calibration for all tests. Only one of two carneras is
used for first two tests

Fig. 8. Gray scale i 1rnage of Cahbratlon pattern viewed by comiputer. One
. square is defecnve

Fig. 9. Thresholded binary image of calibration pattern viewed by com-
puter. -
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Fig. 10. White dots at comners of black squares are calibration points
extracted by computer using specml interpolation technique, which reduces
effect of image spatial quantization of factor of 2 or 3

3) Link edge points in the binary i 1mage to extract a set of
approximate boundary edges.

4) Scan in the direction perpendicular to the approximate
edge locations in the gray scale image to locate the
“‘true’’ edge points using interpolation. -

5) Fit straight lines to true edge points. Then compute
intersections, yielding feature point (corner) coordi-
nates. Fig. 10 illustrates the result by superimposing
white dots on the original gray scale image at computed
feature locations. This procedure yielded image coordi-
nates with an accuracy of 1/2 to 1/3 pixel; in the CCD
3000 camera, pixels are spaced approximately 1 mil
apart (center to center, in X and Y directions).

e) Compute camera intrinsic and extrinsic parameters

using the two-stage technigque: With the inage coordinates .

extracted in d) and the 3D world coordinates of the calibration

- points obtained in b), the key equations (10), (15), and (8b)

used for camera calibration can be used if s, is given. A priori
knowledge of s, is needed only for single plane case. Since our
experience shows that s, is quite consistent for CCD 3000
camera, the same s, can be used for any Fairchild 3000
camera. Furthermore, in many cases, when one changes the
lens and/or exterior orientation/position of the camera, the
calibration must be done again, but s, .is already calibrated
before. We simply take the value of s, that we normally find
for Fairchild CCD 3000, which is 1.042, in this experiment. It
is found that with Fuji 25-mm lens, the angle is wide enough
so that the radial distortion is significant. The distortion is

" found to be barrel type negative distortion, as expected. The

undistorted image coordinate (X, Y,) computed from com-
puter image coordinate (X, Y) and the calibrated distortion
coefficients «;, x, are displayed in Fig. 11, together with the
original distorted points. For the points far away from the
center, the distortion is about three to four pixels.

2) Experimental Results for Monoview Single-Plane
Calibration: A total of 60 calibration points and 60 test points
were used, and Type II measure described in Section III-A is

AVé}éée radius of arhbigﬁity zo}né, .
Maxi_mum ‘radius of ambig‘uity z‘onc - 1.3 mil

Note. 1 mil = 0.001 in. _
"The computer time for calibration is 1.5 s. This computer

" time refefs to the time taken for performing steps 1 and 2 of

the calibration procedure. It can be reduced to half a second
when seven calibration points are used. The program is not
optimized for speed performance It can further be reduced if
effort is invested to optimize the program. The computer used

~ is a 68 000 based MASSCOMP minicomputer. We have very
: recently improved the speed such that it only takes 20 ms to do

extrinsic cgllbratlon and less than 1 s to do the whole
calibration when 36 points are used. It is expected to improve
even more. In fact with slight mod1f1cat10n, the entire two-

.staoe calibration can be done in less than 30 ms.

In the ‘above test, the image origin is chosen to be the
apparent center of the sampled image (see the discussion and
derivation of a) in Stage 1 of Section I-F. Experiments were
also conducted using an arbitrarily chosen image origin (10 X
10 off the origin used in the above test); the results show no
si'ghiﬁcantdifferénce (see discussion and derivation of a) in
Stage 1 of Section I-F.

"3) Analysis:

‘a) Comparison between experimentally obtained er-
ror and predicted error: To use (22)-(24) to obtain a
theoretical upper bound on error, the following parameters are
necessary: '

L=0.4 in
Ag=0.1 mil

z=4in

dy=d,=1 mil

S=1.1in
Nf= 1
No(number of points) = 60.

Ts=3in

‘Since super resolution interpolation scheme was used when

extracting image coordinates, the effective image spatial
quantization § is about 1/2 or 1/3 of d, or d,, the distance
between adjacent CCD sensor elements. Using (22)~(24), the

-following table for the theoretical upper bound of three types

of error described in Section ITI-B. is’ obtained.

Effective image quantization - é = 1/2 mil 8
Erroro (predicted) 3.3 mil ’

= 1/3 mil
2.3 mil

Itis clearly seen by comparing the order of magnitude between
the theoretical error bound and the actual error, the error
bound i is tight enough.

b) Predicted effect of number of calibration points:

‘In Section II-C1 it is explained why the ratio errorey/

EITOT poncalip iVES a good indication or theoretical prediction of
whether the number of points is large enough. From (23) and
(24), the following table is obtained:

Effective Image Quantization - & = 1/2 mil 6 = 1/3 mil
Error e, 0.7 mil 0.5 mil

Errornoncalib . 2.5 mil 1.7 ln_il »
Error,ip/error wncain 29 percent 28 percent
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" Fig. 11.
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White dots near corners of black square are original calibration points and corrected or undistorted points. Size of frame

buffer holding image is 480 X 512. Therefore, it is seen that distortion near border is roughly three to four percent.

Since the ratio is small, it can be inferred that increasing the
number of calibration points will not reduce the error measure

. for. calibration significantly. This is the reason why the

accuracy obtained in this case is not worse than that for the
noncoplanar and mult1ple v1ew1ng calibration to be described

~ later.

B. Test Results for Monoview Multiple-Plane
Multicamera Measurement

1) Experimental Procedure: The procedure is exactly the
same as that for the previous test (coplanar case) except that a

Klinger vertical micrometer stage is used to move the steel block

to elght different heights and eight views are taken without

.moving the camera. However, instead of computing Type I
- measure, Types I and III are to be computed. For this reason, the

second camera in Fig. 7 is needed: The image coordinates
extracted from the eight views are collected together and
treated .as if they were taken from one single view of eight
planes of calibration points. The total height variation is only
abott 0.18 in, because the depth of focus and the total travel
range of the vertical stage are limited. Nevertheless, the
experimental results indicate that the extra depth information
was good enough to estimate all the intrinsic and extrinsic
parameters (including s,) with good accuracy, as can be seen
in the following report of experimental results. The calibration
done to one of the cameras as in the previous test is repeated

idéntically to the second camera. Then a new set of test points -

(60 in total) whose 3D world coordinates are measured in
advance are viewed by both cameras. Then stereo triangula-
tion is used to compute Type I and III measure.

2) Experimental Results for Monoview Multiple-Plane
Calibration:

Type I Measure .Type III Measure

X y " distance between

. coordinate coordinate - depth  cormers of square
Average error 0.4 mil 0.3 mil 0.6 mil - 0.5 mil
Maximum error 1.3 mil 1.5 mil 1.4 mil

1.8 mil

.The total range of x, y are the size of the calibration pattern
(1 in x 1 in), and the total range of depth in the camera
coordinate system is about from 4 in to 4.5 in. Since eight
planes were used, the computer time for calibration is 9 s.
However, only two or three planes are actually needed. That
time- should be reduced by a factor of five. Also, on each
plane, 60 points were used. Another factor of ten can be
reduced in the computer time if only seven points are used on
each plane.” When fewer points are used, the accuracy
degrades somewhat, but not much. Since complete camera
calibration need not be done every millisecond, using 60
points give great accuracy with good speed: However we will
investigate the real benefit of reducmg the umber of points in
the future. :

3) Analysis: The experimental setup and parameters are
identical to that in the previous test. The only difference is the
type of measure used to assess the camera calibration
accuracy. Since same error formula applies both to measures
Type I and Type II, the theoretical error as well as the analysis

is identical to that of the previous test. Notice that the actual

error for type III measure is similar to that for Type I

According to Section III-B the upper bound for measurement
of dimension theoretically should be twice as much as that for
asingle point feature. However, in measuring dimeasion, such
as distance between corners of a square, certain systematic
error sometimes cancels out when one subtracts' the 3D




‘error for Type. 11 is very similar to that of Type I. Since
‘systematic error may not cancel out in all cases, it is better to
' - regard the theoretical upper bound for Type I measure as
tw1ce as much as that for Type I or II. :

V. CONCLUSION
" The new two-stage technique is theoretically and experi-
mentally proven to be viable for 3D machine vision metrol-
ogy. It is shown to be efficient, accurate, and straightforward
to implement in real environment. A new theoretical frame-
work is established, supported by comprehensive proof in the
appendlxes and may pave the way for future research in 3D
- robotics vision. The issues involving the image origin are not
fully exploited, although limited experimental results indicate
that it has negligible effect on the accuracy of final 3D
measurement. The effect of the number of calibration points is
not fully investigated. Experimental results show that - 60
points or more are more than sufficient. Future work may be
needed in investigating the effect of the number of points on
" the accuracy on the three cases (monoview single plane,

monoview multiplane, multiview). Finally, although experi- k

ments on real data are reported in this paper, the potential of
any new technique will not be fully revealed unless extensive
applications are implemented using the new technique. Read-
ers are encouraged to apply the new technique to a wide
variety of machine vision applications to exploit its full

coordlnate of one corner from another That is why the actual

or

Xa J'—ld “_0-‘ : )
Note that (25) can also be derived algebralcally from (4a)
(4b), (52), and (5b). To arrive at an equation like (10) that
contains the image coordinate (X, Y, and 3D world
coordinate (X, Yw, Zw) Of the calibration point, (1), (4a), and
(4b) are used to convert (25) to the following:

Xd(r4xw+ rsYwtreZw+ Ty)= Yd(rlxw+r2yw+r3zw+ 7).
. (26)
By rearrangmg the terms in (26) such that T g1y, T 5.1,
T; 1513, T 1Ty, T; 7y, T; Iy, T; 1r6 are treated as
unknown varlables (16) is obtained.

The subscript i for all Xj, Yi, Xy, Ywis Zwi ID (16) simply
puts an index to (X, Y) and (x,, Yw, Zw) for identification
purpose. For the coplanar case, by settmg Z,, in (26) to 0, and
by treating T s, T, s.rs, T Ls.r3, T; 15T, T; Iy,
T Irs, T rg as unknown varlables (10) is obtamed

. Arpenpix 1T
PROOF FOR THE LINEAR INDEPENDENCE OF COLUMNS OF
COEFFICIENT. MATRIX IN (10) AND (16)
Proof for the Linear Independence of Columns of
Coefficient Matrix in (16) '

Let N be the total number of calibration pomts and G be the
coefficient matrix in (16). Then

Vien T Yo Yh  -Xpta  —Xpha  —Xjon |
L 7
Y,;ZXWZ YézyWZ Y‘;zzwz Yéz _Xdzxw2 "_XdzyWZ “‘-Xdzlwz
G= : . b (27)
L Y n%wn Y inYwn Y inZwn Yiy ——Xanwn  —XanIwn o X GNZwN

potential. Recent effort indicates that with slight modification,
the entire two-stage calibration can be done in speed faster
than the video frame rate.

ApPENDIX I

PROOF OF RADIAL ALIGNMENT CONSTRAINT AND DERIVATION OF
(10) anD (16) FROM THE CONSTRAINT

The radial alignment constraint O;Pz//PoP- deplcted in

Fig. 3 ‘follows from the very simple geometric argument that

O,P, and P, P are the intersection of a plane (passing through

O, P,,, and P) with two parallel-planes (one being the image

plarie, and the other being the plane parallel to image p plane and

passing through P and P,;). Similarly, O.P,//P,P. There-
‘fore, O;Py//P,;P//O;P,. Since O; O,P,//P,P is equivalent to
OPy X Py,P =0 where X signifies vector outer product, we
have

W@ﬂ%@JPO

YiXwi YiVwi Y1Zw1
YaXw2 YaVw2 YaZw2

L YNXwN » YNYwN " YNZwN

By replacing X, with s,* X4, and replacing (X, Y,) with

terms involving (X,, Y,) using (5a) and (5b), followed by

replacing (X,, Y,) with terms involving (x, y, z) using (4a)

and (4b), it is straightforward to show that (27) is equivalent to

. G=D, - H"D, : @)

where Dy, D, are diagonal matrices given o
D=f - diag {(Kizw1)~", (K2zu2) ™,

Ki=1+kri+«?r}

) (KNZWN)- 1

(X2+ YZ)I/Z
Dz—dlag {1 1,1, 1,8, Sxs Se}

and H is glven by -

Y1 —X1Xwi —X1Vwi1 —X1Zw1
Y2 —X2Xw2 —X2Vw2 —X2Zw2

29
YN T —XNXwN —XNYwN —XNZwN
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-Notice that all the diagonal elementsin .

nonzero (Xy, Y,;) would be mapped into a ‘zero’ (Xu, Y, ),
which is optically impossible.) Therefore, the linear indepen-
dence of the columns of G, which is the product of the. three
matrices D, H, and D,, is not influenced by Dy, D,. That is,
it sufﬁces to verify the linear independence of the columns of
H.

“Let H; be the zth colurnn of H. It is to be shown that the.
necessary and sufficient cond1t1on for

isthatg; = Ofori =1, ---, 7. The sufficiency is obvious.

' 'We now show the necessity part Substituting (x;, y;, z;) in
(29) by expressions mvolvmg xis yw,, zw,) using (1), (30)

becomes W |
al(’hﬁ,ﬁ r5xwi}_’wi+r6xwizwi+ Tyx,;)
+ az(}'dfxwivavi_'l" r5x.ai+ TeYwiZwssi+ T, Yui)
_ + as (’;4Zwixwi+ IsZywiYwi+ rszﬁ,,g'!' Tyzy:)
+ a3 (FaZwiXui+ IsZwi Vit 1622+ TyZi)
+ (14Xt s Vi + reZoi+ 7;) »
+ as(fley;+‘f;xwini+ r3XuiZoi + TeXos)
+ a6 (11 Xy Y i+ 1oy ﬁ,,'*‘ T3 YwiZwi+ TeYowi)

+a7(riXwiYwi +vr2ywizwi+r3ywizw‘i+ TeYwi) |

=0 : S Gl)

fori =1, - , N. That is, (31) has to hold sunultaneously for
all i from 1 to N Since, for the purpose of accuracy, N should

‘be chosen to be much larger than. seven, asymptotlcally, 31
‘has to be satisfied for all possible values of (Xyi, Yy, Zwi)-

Therefore, (31) can be tréated as a polynomial equation with
x2, yw,zw,xwyw,xwzw,ywzw,xw,yw,zw,1 as nominals.

Smce for a polynomial to be identically zero, all leading -

coefficients. for. the nominals: must vanish, we obtaln the

following set of constraints on a;, i = 1, «--, 8:
forx2,  arstasn=0 @
for y2, ars+agr; =0 '. - (33)
for z2, asrs+aprs - (34)
for"xwyw, o aj r'sjL ayry+asry+agr;=0 395
‘for XwZws a1r6+a3r4+a5r3fa7r1=0 | (36)
ROt PuGe Gifet@srstagrs+am=0 G7) .
for Xy agretay Ty+asTe=0 (38).
- for y,,; a4r5+(_12 Ty+asT,=0 '. . (39

} dI’lCI.U2 are nonzero . -
" since z,,; is always greater than the effective focal length foand
K; is never zero. (From (5a) and (Sb) had K; been zero, a

ror zw,

;i (40)
forl 7-“a4T o ', : 1)

“The purpose is to show that the above constramts will force all

a,i =1, 7 to be identically zero.

Although theoretlcally more complicated, it can be proved
that all @; must vanish irrespective of whether T, or T, is zero.
However, since T and T, can easily be made nonzero with

B proper expenmental setup (see a) in Stage 1 for the calibration

algorithm), and that for the purpose of simplicity and clarity,
we now assume that 7, and 7, are nonzero.
From (41), ay = 0 Then (38) (40) becorne

= —asT /T, ' (42)
@m=—aT/T, (43)
a'=-—a7T/T. , © (44)

Substltutmg (42) into (32), (43) into (33) and (44) into (34)
glves

—asry Tx/Ty+'a5r1'=O (45)

. —*(16.r5 'Tx/Ty'FGG.I‘Z:O . » (46)
~arg T/ Ty+ars=0. “47)

Substltutmg (42) and (43) into (35), (32) and (34) into (36),
(33) and (34) into (37) glves '

—asrs Tx/Ty— asr T/ Ty+ayry+ agr; =0 (48) -
—a5r6Tx/T:V—a7r4Tx‘/Ty-lfa5r3+a7r1=0 (49)
=asrs T/ Ty—arrs T/ Ty + agrs + ayr, = 0. (50) .

If none of a;, as, as is zero, then from (45)-(47)
I's = Iy . . (51)

which is 1mposs1ble since R is orthonorrnal and [r4r5r6] must
not be equal to [r,r,7;] scaled by a constant. Therefore, at least
one of as, g, @; must be zero. Due to symmetry, it suffices to
take a; as zero (the same proof applies if g or @z is taken to be

Zero ﬁrst) Then from (42), a; =.0, and from “48)

as(ra T/ Ty~ rl) 0. - (52)

If none of a5, @ is zero, then from (52)

re=nT,/T, 53)
and from (46), - '
rs=nrT,/T . : (54)
nnd from (47), .
o re=rT,/ Ty (55)

Then from (53)~(55), (51) again holds, Wthh is xmpossxble for
the same reason stated earlier, T herefore at least one of ag, a7



" From (50),

to be zero. Then frorh (43) az = 0., From (49)

@y (rars T/ Ty) =0. 57

If, at this point, a; is not zero, then from (47)

, n=reT/T,
_from (56), .
r=ry Tx/ T,
" from (57), ' .
ro=rs1,/T,

which implies that

ry Tx Ty

@ (nrs T/ Ty)=0. - (56)

nl==17"
T}’
I3 Ts
. r
R= Ty

+(1=r2—r2)12

and is impossible. Thus @; must vanish, which also’ implies
~ from (44) that a; = 0. In conclusion, the necessary and

sufficient condition for-(30) is that ; = O fori = 1, - -, 7.

, sry o sry .
R.= ST4 s7s .
£l —s?(r%——rﬁ)] 1/2

[1-s2(r2-r)]2

Proof for the Linear Independence of Columns of

‘Coefficient Mamx in (10)

The only dlfferences between coefﬁc1ent matrix in (10) and
in (16) are that (Xy, Y,) is used in (10), while (X Y) =
(5¢X4, Yy) is used in (16), and that the column space of (10) i is
part of the column space in (16) (the third and seventh columns

are niissing (10)). By setting D, in (28) to an identity matrix,
~ which takes care of the first difference, and by considering the

fact that the subspace of a linearly independent column space is

always linearly independent, the coefficient matrix in (10) also
has linearly independent columns. This completes- the proof. '

AprpenDIX IIT
ProoF OF LEMMA 1

Lemma 1: There do not exist two 3 X 3 orthonormal
matrices that differ in their 2 X 2 submatrix by a scale factor
other than + 1. Equivalently, if the 2 X 2 submatrix of a3 X
3 orthonormal matrix is given except for the scale factor, then
that scale factor is unique except for the sign.

¢ '3 orthonormal matrix
submatrix of R:

The purpose is to show that there is no way one can construct a
3 X 3 orthonormal matrix from a 2 X 2 submatrix

rn r
C=s- |t "2
T4 Ts

with s different from 1. Since orthonormality is maintained
no matter how the rows and columns are permuted, we assume
that the 2 X -2 submatrices are in the upper left corner of the 3

- X 3 orthonormal matrices. Let R and R.be'3 X 3 orthonormal

matrices constructed from R, and C. Then from the fact that
the norm of each row and column of R is unity (without yet
considering orthogonahty) R- must assume the following
form:

s
rs +(1-ri=r)'? ‘ G8)
+(l—r2—r)2

=(—1+8)?

where S, = 12 + r3 + ri + r2
- Similarly, 1f R, ex1sts 1t must assume the followmg form
(using the property of unity row and column norm only)

_ i[l—'—sz(_rf—rg)]“z‘ N
£[1-s2(r2—r)\2 | . (59)
+(—1+s25)2 |

In the following, it is to be shown that with the orthogonality
condition imposed, s is forced to take the values of = 1 only.

Since the first two colurnns of R are mutually orthogonal,
we -have

rir+rars= +(1 —r2 rz)l/z(l 2—ri)i2. (60)

' Similarly, for R.,

Sz(r1r2+r4r5)=+[i%si(r2 DI -2+ +r)L. (61)

By substltutmg rirp + r4r5 in (61) thh the right-hand side of

- (60), (61) becomes

- (1=8)s5*+8,s2~1=0

- or

[A=S8)s*+1](s?—1)=0. (62)
From (62), 5% can assume two possible values:

st=1 (63)




(64
Now we show that (64) is valid and is equivalent to (63).
Observe that ry (the (3, 3)th element) in
S:)172. Since |ry] =< 1, we have

—1+8,.<1.

Let the @3, 3)th‘element of R, be denoted as r.o. Substituting
(64) into the'expression for 7.9 in (59) gives ’

S,

: 172
reg= =+ 1-
S—1
1 172
()
S,—1

Since |r| = 1, 1/(S, 1) = 1, or

L S—1=1. (66)

" From (65) and (66) S, — 1 = 1. Thus (64) becomes

§2=1. (67)

- Thus s = +1. This completes the proof.

ArpENpIX IV.
DERIVATION OF COMPUTATION PROCEDURE FOR T,
Case 1: Not a Whole Row or Column.of C Vanishes

From the definition of C and risry,r; ,'rs’ in (11), we have

T, r,T, n ,
R=\|r;T, r{T, r (68)

r7 - I3 Ig

Using the property that the rows and columns of R have unity
norm, we have - »

’
r T,

R= T,

where S, = r{2 + r;2 + r;2 + rl2,
Since the first two columns of R in

, 69) ‘aré mutually
‘orthogonal, we have - ‘

(riri—ryr))? Tj—S, T§+ 1 =0. (70)
There are two solutions for (70):
— 2 _. Iyl el \211/72
T§=S’ [S;—4(r{ri—r,r)?] 71a)

Tty 2
2(r1r5 ryr,

(58)) is (-1 +

(65)

r, T,
riTy, _
i[l—Tﬁ(rl’2+r4’2)]V2 t[l—Tﬁ(rz'z-i—rs’Z)]V?'

. 2
.

T ‘ ='S;.+' [Sf — 4(r1’r5’ —.Ar,:ré’)z] ‘/'2 :

(71b
20—t (71b)
From Lemma 1, |Ty| of T2 is unique. Thus only one among
(71a) and (71b) is valid. We now prove that only (71a) or (12)
is valid. Substituting (70) into expression for ry in (69) gives

ro=£[T5(rir{—rir)?]2

(71)
Thus from (71)
T|(rirg=rirp]=1. (72)
Substituting (71b) into (72) gives
2_ ’ /__“ ’ 12.1/2
S+ [S2 4(riri—r,r;))?] <1 3)

’ /_ 7 ’
2|rr; ryr,

After some simple algebraic manipulation, the following is
derived:

S§,=2 |rl’r5’—r4’r5| =2(lr/r{|+] rirl).

(74)
However, from triangular inequality,

72 2 [..r ’ /i 12 Y .
ri*+r2=2\rir; ry2+ri2=z2\rr]|.

Substitutirig the above two equations into (74) gives
2l riril+2lrirl s S, <2|riri—riri|<2(rir{| + | rir).

Notice in the above inequality_expressions that the leftmost
expression and the rightmost expression _:_ire identical. Thus
equality must hold throughout, giving -

_ Tt et / '
Sp=2|rr rirsl.

- Substituting the; ébove into 7(7'3.) gives

+[1—T2(r{2+r)2)]\2
[ =T3(r 2+
x(=1+8,T2)12

(69)

SAH[S2-4(r{r{=rir)} 2

=]
S, - T
S A
S,
or '
[‘S’f_—4(r1’r5’—r4’r2’)2]1/2 0

s,




The above 1mp11es sthat -whenever :( lb)

LU AUTLIU L,

re idantical mPn

: Case II A Whole Row or Column of C Vanish

~ The derivation is the same no matter which row or column
vanishes. Suppose r| and r vamsh Then

0 0 I3

_ ’ ’
R=\r;T, r{T, Ts
. Iy . g Iy

Since the first row has norm unity, r3 = =+ 1. Again, since the
third column has norm umty, rg = g = O Then

.0 0 ' +l
Vr‘{Ty rT, O
rq rgs 0O

'R= 76)
Since the second row has unity norm,_vye have .
r? T2+r'2T2+0 1
N .

or

Ty | =(r 24T (77)
In general; for Case'll’, :

l T | =.(’../2+r./2)—1/2

where - r/ r are the elements in the row or column of C that
do not vamsh

Case II actually rarely happens sirce" from (76) the
transformatlon between (x, ¥, z) and (X, Vw» zw) entails a
swap of x and z axes, and since the x,, and y,, axes are always’

-~ set parallel to the plane containing the calibration points for

~ convenience, this means the camera is viewing in a direction
tangent to the calibration plane which i is unhkely to happen

APPENDIX Vv

PROOF FOR LEMMA 2 FOR' THE COMPUTATION OF R

Lemma 2: vaen 2 X 2 submatrlx ofa3d X 3 orthonormal'

matrix, there dre exactly two poss1ble solutions _ for the
orthonormal matrix. They are glven in (14a) and (l4b)

Proof: Let the signs ofr,,t = 3,6,7, 8 9 be defined as
s;. From the fact that the norm of the first and second rows are
1, we have ~

: i 2 p2\122
rio o os(l-n r3) :
R= 4 rs 56(1—"73_—1'2)1/2'
o rg - : Ty . '

where ry, rg, 1o are determined from the first two rows using
the orthonormal property and the fact the det (R) = 1 once s3
and s; are fixed. There are two cases to be discussed.

" 1) s3 = 1: From the orthogonality between the first two
TOWS, we have

r,r4+r2r5+s,;(l—r2 rz)l’z(l r2—r))i2=0. (78)

Since (1 — r3 — r3)"? and (a-r- r%)”2 are positive, we

ne ﬂ'mt; (71b) is exther mvahd or not

56= —sgn U‘17‘4+f2f5) '

Note that in case when r1 + r3=1,thenr; = 0 wh1ch means
that s; need not be con31dered In this case, ss can be + 1 or —
1. Taking sg to be (79) is ‘convenient since s for the other

“solution of R will be complementary to (78) (i.e., S¢ = sgn

(rirq + rary). Therefore, (14a) is one solution.
2) s3 = —] In th1s case, (78) becomes

' r1r4+r2r5 ss(1 _,.z_,z)l/z(l_,.z H2=0
giving .
$5=sgn (r1r4+r2r5)

From the orthogonality between first column and th1rd column

.of R, it is séen that changing the signs of r; and rg from case 1
* to case 2 causes the product of the signs of r; and ry to be

reversed. Similarly, from the orthogonality between the

* second column and third column or R, changing the signs of 73

and r¢ causes Sg* Sy to be reversed in sign. Since ry, 1y, 14, I's aie
fixed, from the orthogonality of the first column and second
columi of R, s7* Sg. is reversed in sign. In summary, changing

“from case 1 to case 2 causes the following to happen

S7* '53—’S7 ‘. Sg
7 So~>—87 * S
Sg ° Sg_)—SSf Sg.

There are only two possibilities when changing from case 1 to
case 2 as a result of (80):

" Sg™> =Sy S;7*87 838y

Sg=Sy ST 8 Sg—* — Sg.

It is easy to show that a) causes det (R) to be reversed, while
b) miaintains det (R) to be +1. Thus only b) is valld Thus

_ (14b) is the solutlon for case 2.
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Note ADPDED IN PROOF

It has been a common practice in the computer vision area to
choose the center of the image frame buffer ‘as the image
‘origin. This is always fine for analysis.of 2D patterns. For 3D
.vision, the proper choice of the image center ¢an be critical.
“We reported in this paper that altering the image center by as
much as ten pels does not s1gn1ﬁcantly influence the accuracy
of 3D measurement using the calibrated camera. After the
author submitted the paper, we began investigating this image
center issue more senously and found some interesting results.
We derived several new methods for estimating image centers
efficiently and accurately, and performing real experiments to

test them. We also derived some formulae on how the image .

center error influences the accuracy of actual 3D measure-

(80)




fv thése formulae
As a result of such- mvest1gat10n we found that thé image
center for normal discrete array cameras caii be off from the
apparent center of the frame buffer by much more than ten
pels. Furthermore, the comments which were made on the
-image center are true only for either 3D measurement of ob_]ect
points close to the plane for which the camera was originally
calibrated, or for rather coarse 3D measurement. These results
are published in [28]. In order to use the techmque described
herein, it is recomménded that the readers also read [28].

.ment Rea_ expenmenfq WE‘I‘P dnn tov
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