M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 279 (Replaces TR-228)
Appears in the IEEE Transactions on Image Processing Special Issue: Image Sequence Compression,
vol 3, no. 5, p. 625-638, September 1994. Revised: May, 1994

Representing Moving Images with Layers

John Y. A. Wang anno Edward H. Adelson

Abstract

We describe a system for representing moving
images with sets of overlapping layers. FEach
layer contains an intensity map that defines the
additive values of each pixel, along with an alpha
map that serves as a mask indicating the trans-
parency. The layers are ordered in depth and
they occlude each other in accord with the rules
of compositing. Velocity maps define how the
layers are to be warped over time. The layered
representation is more flexible than standard im-
age transforms and can capture many important
properties of natural image sequences. We de-
scribe some methods for decomposing image se-
quences into layers using motion analysis, and we
discuss how the representation may be used for
image coding and other applications.

Keywords— Image coding, motion analysis, image
segmentation, image representation, robust esti-
mation.

1 Introduction

An image coding system involves three parts: the encoder,
the representation, and the decoder. The representation
is the central determinant of the overall structure of the
coding system. The most popular image coding systems
today are based on “low-level” image processing concepts
such as DCT’s, subbands, etc. It may ultimately be pos-
sible to encode images using “high-level” machine vision
concepts such as 3-D object recognition, but it will be
many years before such techniques can be applied to ar-
bitrary images. We believe that a fruitful domain for new
image coding lies in “mid-level” techniques, which involve
concepts such as segmentation, surfaces, depth, occlusion,
and coherent motion. We describe one such representation
based on “layers” and show how it may be applied to the
coding of video sequences.

Consider the language used by a traditional cel anima-
tor. First a background is painted and then a series of

Edward H. Adelson is affiliated with the Department of
Brain and Cognitive Sciences.

John Y. A. Wang is affiliated with the Department of
Electrical Engineering and Computer Sciences.

Both are at the The MIT Media Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139.

This research was supported in part by contracts with
the Television of Tomorrow Program, SECOM Co., and
Goldstar Co. We thank Ujjaval Desai for compressing the
layer images.

Background

()

Frame 2 Frame 3

Frame 1

Figure 1: The objects involved in a hypothetical scene of
a moving hand. (a) The hand, which undergoes a simple
motion. (b) The background, which is translating down
and to the left. (c) The observed image sequence.

images are painted on sheets of clear celluloid (the “cels”).
As a cel is moved over the background it occludes and
reveals different background regions. A similar represen-
tation is used in computer graphics where a set of images
can be composited with the aid of “alpha channels” that
serve as masks to indicate the transparency and opacity of
the overlying layers.

In traditional cel animation one is restricted to rigid mo-
tions of the backgrounds and the cels. In a digital system,
however, it is easy to use more complex motions such as
affine transformations, which include all combinations of
translation, rotation, dilation, and shear. Such representa-
tions will be successful insofar as the image model offers an
adequate description of the motions found in the original
sequence.

Figure 1 illustrates the concept with an image sequence
of a waving hand (figure 1a) moving against a moving back-
ground (figure 1b). Suppose that both the hand and the
background execute simple motions as shown. The resul-
tant image sequence is shown in figures lc.

Given this sequence we wish to invert the process by
which it was generated. Thus we would like to decompose
the sequence into a set of layers which can be composited
so as to generate the original sequence. Since the world
consists of stable objects undergoing smooth motions, our
decomposition should also contain stable objects undergo-
ing smooth motions.

An earlier description of layered formats is found in [1].



Intensity map Alpha map

Intensity map Alpha map

()

Frame 3

Frame 2

Frame 1

Figure 2: The desired decomposition of the hand sequence
into layers. (a) The background layer. The intensity map
corresponds to the checkerboard pattern; the alpha map
is unity everywhere (since the background is assumed to
be opaque); the velocity map is a constant. (b) The hand
layer. The alpha map is unity where the hand is present
and zero where the hand is absent; the velocity map is
smoothly varying. (c) The resynthesized image sequence
based on the layers.

In the representation that we use, following Adelson [1],
each layer contains three different maps: (1) the intensity
map, (often called a “texture map” in computer graph-
ics); (2) the alpha map, which defines the opacity or trans-
parency of the layer at each point; and (3) the velocity
map, which describes how the map should be warped over
time. In addition, the layers are assumed to be ordered in
depth.

Figure 2 shows the layered decomposition of the hand
sequence. The hand and background layers are shown in
figures 2a and b, respectively. The resynthesized sequence
is shown in figure 2c.

Let us note that traditional motion analysis methods fall
short of what is needed. Optic flow techniques typically
model the world as a 2-D rubber sheet that is distorted
over time. But when one object moves in front of another,
as moving objects generally do, the rubber sheet model
fails. Image information appears and disappears at the
occlusion boundaries and the optic flow algorithm has no
way to represent this fact. Therefore such algorithms tend
to give extremely bad motion estimates near boundaries.

In many image coding systems the motion model is even
more primitive. A fixed array of blocks are assumed to
translate rigidly from frame to frame. The model cannot
account for motions other than translations, nor can it deal
with occlusion boundaries.

Figure 3: A flow chart for compositing a series of layers.
The box labeled “cmp” generates the complement of alpha,

(1-a)

The layered representation that we propose is also an
imperfect model of the world but it is able to cope with
a wider variety of phenomena than the traditional repre-
sentations. The approach may be categorized with object-
based methods [10, 14].

2 The layered representation

As discussed above, a layer contains a set of maps specify-
ing its intensity, opacity, and motion. Other maps can be
defined as well, but these ones are crucial.

In order to deal with transparency, motion blur, optical
blur, shadows, etc., it is useful to allow the alpha channel
to take on any value between 0 and 1. A flow chart for
the compositing process is shown in figure 3. Each layer
occludes the one beneath it, according to the equation:

Li(z,y) = Eo(z,y)(1 = ou(z,9)) + Ea(z, y)aa(z, ). (1)

where o7 is the alpha channel of layer E; and Ejy is the
background layer. Any number of stages can be cascaded,
allowing for any number of layers.

For dealing with image sequences we allow a velocity
map to operate on the layers over time. It is as if the cel
animator were allowed to apply simple distortions to his
cels. The intensity map and the alpha map are warped
together so that they stay registered. Since the layered
model may not adequately capture all of the image change
in each layer, we also allow for a “delta map,” which serves
as an error signal to update the intensity map over time.
The resulting system is shown in figure 4. Only one full
stage is shown, but an unlimited series of such stages may
be cascaded.

Once we are given a description in terms of layers, it is
straightforward to generate the image sequence. The dif-
ficult part is determining the layered representation given
the input sequence. In other words, synthesis is easy but
analysis is hard. The representation is non-unique: there
will be many different descriptions that lead to the same
synthesized image sequence. Indeed it is always possible
to represent an image sequence with a single layer, where



Figure 4: A flow chart for compositing that incorporates
velocity maps, V, and delta maps, D.

the delta map does all the work of explaining the change
over time. As our expertise in mid-level vision improves
we can achieve better representations that capture more of
the underlying structure of the scene. Thus, a layered rep-
resentation can serve to specify the decoding process, while
the encoding process remains open to further improvement
by individual users.

We will describe some analysis techniques that we have
applied to a set of standard video sequences. In our present
implementations we have simplified the representation in
several ways. The alpha channels are binary, i.e. objects
are completely transparent or completely opaque. The ve-
locity maps are restricted to affine transformations. There
are no delta maps used. In spite of these simplifications the
representation is able to capture much of the desired image
information. Earlier discussions of this work are contained
in [20, 21].

3 Analysis into layers

Let us begin by considering the first layer: the background.
Sometimes the background is stationary but often it is un-
dergoing a smooth motion due, for example, to a camera
pan. Background information appears and disappears at
the edges of the screen in the course of the pan. It is,
of course, possible to send updating information on each
frame, adding and subtracting the image data at the edges.
However, with layers it is preferable to represent the back-
ground as it really is: an extended image that is larger
than the viewing frame. Having built up this extended
background, one can simply move the viewing frame over
it, thereby requiring a minimal amount of data.

Figure 5a shows a sequence of positions that the view-
ing frame might take during a pan over the background.
Figure 5b shows the image information that can be ac-
cumulated from that sequence. At any given moment the
camera is selecting one part of the extended background [9,
18].

To build up the extended background we may consider

Original scene
la—

[~
— Individual frames

Accumulated layer

- | Visible portion
at one instant.

(b)

Figure 5: (a) The frames in the sequence are taken from an
original scene that is larger than any individual frame. (b)
The information from all the frames may be accumulated
into a single large layer. Each frame is then a glimpse into
this layer as viewed through a window.

the background to be a continuous function of unlimited
spatial extent [11, 13]. Each image in a sequence cap-
tures a set of discrete samples from that function within
the bounds specified by the viewing frame. The viewing
parameters may change over time; for example the back-
ground image may undergo affine or higher-order distor-
tions. If we estimate these parameters we can continue to
map the image data into our extended background image.

It is also possible that foreground objects will obscure
the background from time to time. If there are background
regions that are always obscured we cannot know their true
content. On the other hand, since these regions are never
seen, we do not need to know them in order to resynthe-
size the sequence. Any regions that are revealed can be
accumulated into the background if we correctly identify
them.

To illustrate how an extended view of a layer can be ob-
tained, consider the MPEG flower garden sequence, three
frames of which are shown in figure 6. Because the camera
is translating laterally, the flower bed image undergoes a
shearing motion, with the nearer regions translating faster
than the farther regions. The distortion can be approx-
imated by an affine transformation. Figure 7 shows the
sequence after the motion of the flower bed has been can-
celled with the inverse affine transformation. When the
inverse warp is applied, the flower bed is stabilized. The
remainder of the image appears to move; for example the
tree seems to bend.

We can generate the entire warped sequence and accu-
mulate the pixels with stable values into a single image.
This image will contain pixels that belong to the flower
bed, including those that were sometimes hidden by the
tree and those that were sometimes hidden by the right or
left boundary of the viewing frame. Such an accumulated
image is shown in figure 8.



Figure 7: (a) Frame 1 warped with an affine transformation to align the flowerbed region with that of frame 15. (b)
Original frame 15 used as reference. (c) Frame 30 warped with an affine transformation to align the flowerbed region with
that of frame 15.

Figure 8: Accumulation of the flowerbed. Image intensities are obtained from a temporal median operation on the motion
compensated images. Only the regions belonging to the flowerbed layer is accumulated in this image. Note also occluded
regions are correctly recovered by accumulating data over many frames.



In the ideal case, it will be possible to account for all the
visible flower bed pixels in every image in the sequence by
warping and sampling this single accumulated image. And
in practice we find the process can be fairly successful in
cases where the region is undergoing a simple motion.

The same process can be used for any region whose mo-
tion has been identified. Thus we may build up separate
images for several regions. These become the layers that
we will composite in resynthesizing the scene. Figure 12
shows the other layers that we extract: one for the house
region; one for the tree. We will now describe how we use
motion analysis to perform the layered decomposition.

4 Motion analysis

The flower garden sequence contains a number of regions
that are each moving in a coherent fashion. We can use
the motion to segment the image sequence. In traditional
image processing systems, segmentation means that each
pixel is assigned to a region and the image is cut apart
like a jigsaw puzzle without overlap. We do perform such
a segmentation initially, but our ultimate goal is a layered
representation whereby the segmented regions are tracked
and processed over many frames to form layers of surface
intensity that have overlapping regions ordered in depth.
Thus, our analysis of an image sequence into layers con-
sists of two stages: 1) robust motion segmentation and; 2)
synthesis of the layered representation.

We consider that regions undergoing common affine mo-
tion are likely to arise from the same surface in the world,
and so we seek out such regions and group them together.
Affine motion is defined by the equations:

Va(2,y) = @20 + aaaT + aayy; (2)

Vy(z,y) = ayo + aysx + ayyy (3)
where Vz and Vy are the z and y components of velocity,
and the a’s are the parameters of the transformation. If
these components are plotted as a function of position, then
affine motions become planes. When we use affine models
for analyzing motion, we are proposing that the optic flow
in an image can be described as a set of planar patches in
velocity space.

The concept is easier to visualize in one dimension, as
shown in figure 9a. Suppose that we have a background
undergoing one affine motion and a foreground object un-
dergoing another affine motion. In the illustration the
foreground object contains two parts, both of which are
undergoing a common motion. The velocity field will con-
sist of five different patches: three corresponding to the
background, and two corresponding to the foreground.

In a standard optic flow algorithm the velocity field
will be smoothed. Such algorithms generally impose some
smoothing on the velocity estimates in order to deal with
noise, the aperture problems, etc. The result is a smooth
function as shown in figure 9b. Regions along the bound-
aries are assigned velocities that are intermediate between
the foreground and background velocities. This is plainly
incorrect. It arises from the fact that the optic flow al-
gorithm is implicitly using something like a rubber-sheet
model of the world. The velocity field is single-valued and
smooth, and so the mixing of the two motions is inevitable.

The analysis can be improved by allowing for sharp
breaks in the velocity field, as is often done with regular-
ization [7, 15]. The velocity field is now modeled as a set

velocity —»
.
L]
L]
.

velocity —»

position —»

(a) velocity estimates

position —=

(b) velocity smoothing

velocity —
.

velocity —=

position —=

(c) regularization

position —=

(d) robust estimation

Figure 9: (a) Velocity estimates appear as samples in space.
(b) Standard optic flow algorithms impose some smoothing
on the velocity estimates in order to deal with noise. (c)
Regularization algorithms model the velocity field as a set
of smooth regions while allowing for sharp breaks at model
boundaries. (d) Shows the representation that we wish to
attain. The velocity samples are explained by two affine
models (straight lines) and discontinuities are explained by
the occlusion of one object by the other.

of smooth regions interrupted by discontinuities. The re-
sult looks like that shown in figure 9c. The representation
still has problems. It does not allow for multiple motion
estimates to coexist at a point, which is needed for dealing
with transparency. And it does not tell us anything about
the way the regions should be grouped; it does not know,
for example, that all of the background segments belong
together.

Figure 9d shows the representation that we wish to at-
tain. Since we are modeling the motions with affine trans-
formations, we are seeking to explain the data with a set
of straight lines. In this case we need two straight lines,
one for the background and one for the foreground. There
are no motion discontinuities as such: the lines of motion
continue smoothly across space. The discontinuities are to
be explained by the occlusions of one object by another —
that is, there are discontinuities in visibility. The motions
themselves are considered to extend continuously whether
they are seen or not. In this representation the background
pixels all share a common motion, so they are assigned to a
single segment, in spite of being spatially non-contiguous.
This represents the first phase of our motion analysis.

5 Robust motion segmentation

Our robust segmentation consists of two stages: 1) local
motion estimation; 2) segmentation by affine model fit-
ting. Critical processing involves motion estimation and
segmentation.

A number of authors have described methods for achiev-
ing multiple affine motion decompositions [3, 5, 9]. Our
method is based on robust estimation and k-means clus-



tering in affine parameter space.

In many multiple motion estimation techniques, a recur-
sive algorithm is used is to detect multiple motion regions
in the scene [3, 9]. At each iteration, these algorithms as-
sume that a dominant motion region can be detected. Once
the dominant region is identified and the motion within
the region is estimated, it is eliminated and the next dom-
inant motion is estimated from the remaining portion of
the image. Such methods can have difficulties with scenes
containing several strong motions, since the estimated pa-
rameters reflect a mixture of sources.

To avoid the problems resulting from estimating a sin-
gle global motion, we use a gradual migration from a local
representation to a global representation. We begin with a
conventional optic flow representation of motion. Because
optic flow estimation is carried out over a local neighbor-
hood, we can minimize the problems of mixing multiple
motions within a given analysis region. From optic flow,
we determine a set of affine motions that are likely to be
observed. Segmentation is obtained by classifying regions
to the motion model that provides the best description of
the motion within the region.

The segmentation framework is outlined in figure 10.
At each iteration, our multiple model framework identifies
multiple coherent motion regions simultaneously. Itera-
tively, the motion model parameters are calculated within
these coherent regions and segmentation is refined.

Several authors have presented robust techniques [4, 5,
6] for multiple motion estimation. Black and Anandan de-
scribed a multiple motion estimation technique that applies
image constraints via influence functions that regulate the
effects of outliers in a simulated annealing framework. Dar-
rell and Pentland described a multi-model regularization
network whereby image constraints are applied separately
to each model. Depommier and Dubois employed line
models to detect motion discontinuities. These techniques,
however, require intensive computation.

We use a simpler technique for imposing image con-
straints and rejecting outliers. In our algorithm, motion
smoothness is imposed only within the layer and by having
multiple layers we can describe the discontinuities in mo-
tion. In addition, we impose constraints on coherent region
size and local connectivity by applying simple thresholds
to reject outliers at different stages in the algorithm, thus
providing stability and robustness.

5.1 Optic flow estimation

Our local motion estimate is obtained with a multi-scale
coarse-to-fine algorithm based on a gradient approach de-
scribed by [2, 12, 16]. For two consecutive frames the mo-
tion at each point in the image can be described by equa-
tion 4 and the linear least-squares solution for motion by
equation 5:

2L

=, BB o

SI; V, | S -1,

where, I, I,, and I; are the partial derivatives of the image
intensity at position (z,y) with respect to z, y, and ¢, re-

spectively. The summation is taken over a small neighbor-
hood around the point (z,y). The multi-scale implementa-
tion allows for estimation of large motions. When analyz-
ing scenes exhibiting transparent phenomena, the motion
estimation technique described by Shizawa and Mase [17]
may be suitable. However, in most natural scenes, the sim-
ple optic flow model provides a good starting point for our
segmentation algorithm.

5.2 Motion segmentation

Given the optic flow field, the task of segmentation is to
identify the coherent motion regions. When a set of mo-
tion models are known, classification based on motion can
directly follow to identify the corresponding regions. How-
ever, the corresponding motion models for the optic flow
field are unknown initially. One simple solution is to gen-
erate a set of models that can describe all the motions
that might generally be encountered in sequences. This
results in a large hypothesis set, which is undesirable be-
cause classification with a large number of models will be
computationally expensive and unstable.

In our framework, we sample the motion data to derive
a set of motion hypotheses that are likely to be observed in
the image. Referring to figure 10, the region generator ini-
tially divides the image into several regions. Within each
region, the model estimator calculates the model parame-
ters producing one motion hypothesis for each region. An
ideal configuration for these regions is one that corresponds
to the actual coherent regions. However, this configuration
is unknown and is ultimately what we want to obtain in
segmentation.

We use an array of non-overlapping square regions to
derive an initial set of motion models. The size of the
initial square regions are kept to a minimum to localize the
estimation and to avoid estimating motion across object
boundaries. Larger regions will provide better parameter
estimation under noisy situations.

The affine parameters within these regions are estimated
by standard linear regression techniques. This estimation
can be seen as a plane-fitting algorithm in the velocity
space since the affine model is a linear model of local mo-
tion. The regression is applied separately on each velocity
component because the z affine parameters depend only
on the z component of velocity and the y parameters de-
pend only on the y component of velocity. If we let al =
[@4z0; Gazzi Goy; Gyo; Gyz; Gyy;] De the it" hypothesis
vector in the 6 dimensional affine parameter space with
;" =[as0i Gzoi asy;]and ay,” =[ayo; ays; ayy,] cor-
responding to the z and y components , and ¢T = 1 z y]
be the regressor, then the motion fields equations 2 and 3
can be simply written as:

Val(z,y) = (;STaxl (6)

. T .

Vy(z,y) = ¢~ ay, (7)
and a linear least squares estimate of a; for a given motion
field is as follows:

[ao, ay ] =[Y_ ¢ 6"17" > _(6[Valz,9) Vil(z,9)]) (8)

P;

i

where each region is indexed with the variable i, and the
summation is applied within each region.



+ final

image
sequence .
a optic flow o model
estimator | estimator

segmentation

model region

L L byl ] S
merger classifier

i

'

region
generator

region
filter

region
splitter

Figure 10: This figures shows the motion segmentation algorithm. Motion models are estimated within regions specified
by the region generator. Similar models are merged by the merger and segmentation obtained by motion classification.
Region splitter and region filter enforces local connectivity and provides robustness to the system.

Regardless of the initial region size, many of the affine
hypotheses will be incorrect because the initial square re-
gions may contain object boundaries. The reliability of a
hypothesis is indicated by its residual error, 62, which can
be calculated as follows:

o2 = %Z(V(z,y) — Va,(z,y)) (9)

where N is the number of pixels in the analysis region. Hy-
potheses with a residual greater than a prescribed thresh-
old are eliminated because they do not provide a good de-
scription of motion within the analysis region.

Motion models from regions that cover the same object
will have similar parameters. These are grouped in the
affine motion parameter space with a k-means clustering al-
gorithm [19], which is modified to allow k to be determined
adaptively. In the clustering process, we derive a represen-
tative model for each group of similar models. This model
clustering produces a set of likely affine motion models that
are exhibited by objects in the scene. In addition, it pro-
vides more stability in the segmentation by representing a
single coherent motion region with a single model instead
of with various similar models.

A scaled distance, Dp,(a1,az2), is used in the parameter
clustering process in order to scale the distance of the dif-
ferent components in the parameter space. Scale factors
are chosen so that a unit distance along any component
in the parameter space corresponds to roughly a unit dis-
placement at the boundaries of the image.

Dm(ar,a2) = [(a1 —a2)"M(a; —a)]7  (10)

M = diag(1 2?1 P T2:) (11)
where r is the roughly the dimensions of the image.

In our adaptive k-means algorithm, a set of cluster cen-
ters that are separated by a prescribed distance are initially
selected. Fach of the affine hypotheses is then assigned
to the nearest center. Following the assignment, the cen-
ters are updated with mean position of the cluster. Itera-
tively, the centers are modified until cluster membership,
or equivalently, the cluster centers are unchanged. During
these iterations, some centers may approach other centers.
When the distance between any two centers is less than
a prescribed distance, the two clusters are merged into a
single cluster, reducing the two centers into a single cen-
ter. In this way, the adaptive k-means clustering strives at
describing the data with a small number of centers while

minimizing distortion. By selecting the clusters with the
largest membership, we can expect to represent a large
portion of the image with only a few motion models.

5.3 Region assignment by hypothesis
testing

We use the derived motion models in a hypothesis testing
framework to identify the coherent regions. In the hy-
pothesis testing, we assign the regions within the image in
a way that minimizes the motion distortion. We use the
distortion function, G(i(z,y)), described by:

G(i(z,9)) = Y_(V(z,9) = Va,(z,9)>  (12)

z,y

where i(z, y) indicates the model that location (z,y) is as-
signed to, V(z,y) is the estimated local motion field, and
Va,(z,y) is the affine motion field corresponding to the
i'" affine motion hypothesis. From equation 12, we see
that G(i(z, y)) reaches a minimum when the affine models
exactly describe the motion within the regions. However,
this is often not the case when dealing with real sequences,
so instead we settle for an assignment that minimizes the
total distortion.

Since each pixel location is assigned to only one hypoth-
esis, we obtain the minimum total distortion by minimizing
the distortion at each location. This is achieved when each
pixel location is assigned to the model that best describes
the motion at that location. Coherent motion regions are
identified by processing each location in this manner. We
summarize the assignment in the following equation:

io(z,y) = arg min [V(z,y) — Va,(z,9)]’ (13)
where 19(z, y) is the minimum distortion assignment.

However, not all the pixels receive an assignment be-
cause some of motion vectors produced by optic flow es-
timation may not correctly describe image motion. In re-
gions where the assumptions used by the optic flow estima-
tion are violated, usually at object boundaries, the motion
estimates are typically difficult to described using affine
motion models. Any region where the error between the
expected and observed motion is greater than a prescribed
threshold remains unassigned, thus preventing inaccurate
data from corrupting the analysis. We find by experiment
that a value of 1 pixel motion provides a reasonable thresh-

old.



We now define the binary support maps that describe
the regions for each of the affine hypotheses as:

Pi(m’y):{ 1 ifio(z,y) =1 (14)

0 otherwise

Thus, for each model, its corresponding region support
map takes on the value of 1 in regions where it best de-
scribes the motion, and a value of 0 elsewhere. These maps
allow us to identify the model support regions and to refine
our affine motion estimates in the subsequent iterations.

5.4 TIterative algorithm

In the initial segmentation step, we use an array of square
regions. These will not produce the best set of affine mod-
els as discussed above. However, after the first iteration,
the algorithm produces a set of affine models and the cor-
responding regions undergoing affine motion. By estimat-
ing the affine parameters within the estimated regions, we
obtain parameters that more accurately describe the mo-
tion of the region. At each iteration, the segmentation
becomes more accurate because the parameter estimation
of an affine motion model is performed within a single co-
herent motion region.

Additional stability and robustness in the segmentation
is obtained by applying additional constraints on the co-
herent regions. These constraints are applied to the seg-
mentation before the models are re-estimated. Because the
affine motion classification is performed at every point in
the image with models that span globally, a model may
coincidentally support points in regions undergoing a dif-
ferent coherent motion or it may support points that have
inaccurate motion estimates. Typically, this results in a
model supporting sporadic points that are disjoint from
each other.

The region splitter and filter as shown in figure 10 iden-
tify these points and eliminate them. When two disjoint
regions are supported by a single model, the region split-
ter separates them into two independent regions so that
a model can be produced for each region. Following the
splitter is the region filter, which eliminates small regions
because model estimation in small regions will be unsta-
ble. Subsequently, the model estimator produces a motion
model for each reliably connected region. Thus the region
splitter in conjunction with the region filter enforces the
local spatial connectivity of motion regions.

Sometimes the splitting process produces two regions
even though they can be described by a single model. This,
however, is not a problem because the parameters esti-
mated for each of these regions will be similar. The mod-
els corresponding to these regions will be clustered into a
single model in the model merging step.

Convergence is obtained when only a few points are reas-
signed or when the number of iterations reaches the max-
imum allowed. This is typically less than 20 iterations.
Regions that are unassigned at the end of the motion seg-
mentation algorithm are re-assigned in a refinement step of
the segmentation. In this step, we assign these regions by
warping the images according to the affine motion models
and selecting the model that minimizes the intensity error
between the pair of images.

The analysis maintains temporal coherence and stability
of segmentation by using the current motion segmentation

results to initialize the segmentation for the next pair of
frames. The affine model parameters and the segmenta-
tion of a successive frame will be similar because an object’s
shape and motion change slowly from frame to frame. In
addition to providing temporal stability, analysis that is
initialized with models from previous segmentation results
in fewer iterations for convergence. When the motion seg-
mentation on the entire sequence is completed, each affine
motion region will be identified and tracked in the sequence
with corresponding support maps and affine motion pa-
rameters.

Typically, processing on the subsequent frames requires
only two iterations for stability, and the parameter cluster-
ing step becomes trivial. Thus, most of the computational
complexity is in the initial segmentation, which is required
only once per sequence.

6 Layer synthesis

The robust segmentation technique described above pro-
vides us with a set of non-overlapping regions, which fit
together like pieces of a jigsaw puzzle. Regions that are
spatially separate may be assigned a common label since
they belong to the same motion model. However, robust
segmentation does not generate a layered representation in
and of itself. The output of a segmenter does not provide
any information about depth and occlusion: the segments
all lie in a single plane.

In order to generate a true layered representation we
must take a second step. The information from a longer
sequence must be combined over time, so that the stable
information within a layer can be accumulated. Moreover,
the depth ordering and occlusion relationships between lay-
ers must be established. This combined approach — robust
segmentation followed by layer accumulation —is central to
the present work. Previous robust segmenters have taken
the first step but not the second. (Note that Darrell and
Pentland use a “multi-layer” neural network in their robust
segmenter, but their neural layers contain no information
about depth ordering or occlusion, nor do they contain
overlapping regions.)

In deriving the intensity and alpha maps for each layer,
we observe that the images of the corresponding regions in
the different frames differ only by an affine transformation.
By applying these transformations to each of the frames
in the original sequence, corresponding regions in different
frames can be motion compensated with an inverse warp.
We use bicubic interpolation in motion compensation.

Thus, when the motion parameters are accurately esti-
mated for each layer, the corresponding regions will appear
stationary in the motion compensated sequence. The layer
intensity maps and alpha maps are derived from these mo-
tion compensated sequences.

Some of the images in the compensated sequence, how-
ever, may not contain a complete image of the object be-
cause of occlusions. Additionally, an image may have small
intensity variations due to different lighting conditions. In
order to recover the complete representative image and
boundary of the object, we collect the data available at
each point in the layer and apply a median operation on
the data. This operation can be easily seen as a tempo-
ral median filtering operation on the motion compensated
sequence in regions defined by the support maps. Ear-



lier studies have shown that motion compensation median
filter can enhance noisy images and preserve edge informa-
tion better than a temporal averaging filter [8].

Layeri(z,y) = 15

median{M;1(z,y), Mi2(z,y), ..., Mi n(z,y)} (15)
where Lager; is the i'" layer, and M;(z,y) is the mo-
tion compensated image obtained by warping frame k of
the original sequence by the estimated affine transform for
layer :. Note that the median operation ignores regions
that are not supported by the layer. These regions are
indicated by a 0 in the support maps described in equa-
tion 14.

Finally, we determine occlusion relationships. For each
layer, we generate a map corresponding to the number of
points available for constructing the layer intensity map.
A point in the intensity map generated from more data
is visible in more frames and its derived intensity in the
layer representation is more reliable. These maps and the
corresponding layer intensity maps are warped to their re-
spective positions in the original sequence according to the
inverse affine transformation. By verification of intensities
and of the reliability maps, the layers are assigned a depth
ordering. A layer that is derived from more points oc-
cludes an image that is derived from fewer points, since an
occluded region necessarily has fewer corresponding data
points in the motion compensation stage. Thus, the statis-
tics from the motion segmentation and temporal median
filtering provide the necessary description of the object mo-
tion, texture pattern, opacity, and occlusion relationship.

7 Experimental results.

We have implemented the image analysis technique in C
on a Hewlett Packard 9000 series 700 workstation. We il-
lustrate the analysis, the representation, and the synthesis
with the first 30 frames of the MPEG flower garden se-
quence, of which frames 1, 15 and 30, are shown in figure 6.
Dimensions of the image are 720 x 480. In this sequence,
the tree, flower bed, and row of houses move towards the
left but at different velocities. Regions of the flower bed
closer to the camera move faster than the regions near the
row of houses, which in the distance.

Optic flow obtained with a multi-scale coarse-to-fine gra-
dient method on a pair of frames is shown in figure 11a.
Notice the incorrect motion estimates along the occlusion
boundaries of the tree as shown by the different lengths of
the arrows and the arrows that point upwards.

The segmentation map for the first frame is shown in
figure 11b. Each affine motion region is depicted by a dif-
ferent gray level. The darkest regions along the edges of
the tree correspond to regions where the motion could not
be easily described by affine models. Region assignment
based on warping the images and minimizing intensity er-
ror reassigns these regions, shown in figure 11c.

We used an initial segmentation map consisting of 75
non-overlapping square regions to derive a set of affine mo-
tion model. However, we found that the exact number of
initial regions is not critical in the segmentation. The ten
models with the lowest residual errors were selected from
the k-means affine parameter clustering for model testing
in the assignment stage. After about five iterations, seg-
mentation remained stable with four affine models. We

find that the number of models initially selected can vary
from 5 to 15 with similar results. This initial segmentation
required about two minutes of computation time. Total
computation time for motion analysis on the 30 frames in-
cluding the median operation is about 40 minutes.

We used frame 15 as the reference frame for the image
alignment. With the motion segmentation, we are able
to remove the tree from the flower bed and house layers
and recover the occluded regions. The sky layer is not
shown. Regions with no texture, such as the sky, cannot
be readily assigned to a layer since they contain no mo-
tion information. We assign these regions to a single layer
that describes stationary textureless objects. Note that
the overlap regions in house and flower bed layer are un-
dergoing similar motion, and therefore, these regions can
be supported by either layer without introducing annoying
artifacts in the synthesis.

We can recreate an approximation of the entire image
sequence from the layer maps of figure 12, along with the
occlusion information, the affine parameters that describe
the object motion, and the stationary layer. Figure 13
shows three synthesized images corresponding to the three
images in figure 6. The objects are placed in their respec-
tive positions and the occlusion of background by the tree
is correctly described by the layers.

Figures 15, 16, 17 show results of layer analysis on the
MPEG calendar sequence. In this sequence, a toy train
pushes a ball along the track, while the camera pans right
and zooms out. A small rotating toy in lower left corner
of the image did not produce a layer because its motion
could not be estimated. Also the calendar, which is moving
downward with respect to the wallpaper, is combined into
a single layer with the wallpaper. These regions are repre-
sented with a single layer because motion in these regions
as estimated from two consecutive frames can be described
with a single affine motion within specified motion toler-
ances. To handle this problem, we need to consider motion
analysis and segmentation over different temporal scales.

Currently, our motion analysis technique performs well
when motion regions in the image can be easily described
by the affine motion model. Because our analysis is based
on motion, regions must be sufficiently textured and large
in size for stability in the segmentation and layer extrac-
tion. Therefore, scenes with few foreground objects under-
going affine motion are suitable for our analysis. Sequences
with complicated motions that are not easily described by
the layered model require special treatment.

8 Compression

The layered decomposition can be used for image compres-
sion. In the case of the flower garden sequence, we are able
to synthesize a full 30 frame sequence starting with only
a single still image of each of the layers. The layers can
be compressed using conventional still image compression
schemes. While we have not yet done extensive studies of
compression we can describe some preliminary results [22].

The data that must be sent to reconstruct the flower gar-
den sequence includes the intensity maps, the alpha maps,
and the motion parameters for each layer. To compress the
intensity map we used a JPEG coder. Some blocks in the
map are empty, being outside the valid region of support
for the layer; these are coded with a symbol indicating an



R et

et e e
b ce
Fee e e
veeete e
e e ce
v ek

¢
IS

-
s

s

L A N S
L N P PPN

LN NP

TAA DA n A
PANA A nm A

PAM A A mm AT
F N N N N TN
L R PPN

-

P
.
€
<
<
<
<
<
<
<
<
<
<
<
<
.

e e e
e e N

e
g<«~«—«—~‘\
T N

Ce et
~

i
i
.

<
<
et ¢
<

I NN AP
T

<
<
<
<
<
<
<
<
<
<
<

©
©
©
<
<
©
<
¢
<

<

Nam o an A

<

<
<
¢
¢
<
<
<
<
<
<

<

R RN

<

'h

A

<

<
<
©
¢
<
<
©
¢
<
<
<

ettt C e e e e e
ettt e
ettt e c e
D e S

L P

<

et e e e

(a)

i

8

Figure 11: (a) The optic flow from multi-scale gradient method. (b) Segmentation obtained by clustering optic flow into
affine motion regions. (c) Segmentation from consistency checking by image warping. Representing moving images with

layers.

e e e

E R N R I N ]

.- . »

« ¥ %% ¥ « €

€ & ® % % * € &

e TP P
— T

A

AR AR AR

Figure 12: The layers corresponding to the tree, the flower bed, and the house shown in figures (a-c), respectively. The
affine flow field for each layer is superimposed.

Figure 14: The sequence reconstructed without the tree layer shown in figures (a-c), respectively.

10



Figure 15: Frames 0, 15 and 30, of MPEG Calendar sequence shown in figures (a-c), respectively.

/(“‘lﬂ_ﬂ-—‘—_k\\\\
/(r-—q—«.\\\\,\

¥ ¥ & « ¢« « v x

> B P S S S+ B BB

Figure 16: The layers corresponding to the ball, the train, and the background shown in figures (a-c), respectively.

Figure 17: Synthesize frames 1, 15 and 30, of MPEG Calendar sequence shown in figures (a-c), respectively. These Images
are generated from the layer images in figure 16.

11



empty block. Other blocks are partially empty, and these
were filled in smoothly so that JPEG did not devote bits
to coding the sharp (spurious) edge. To compress the al-
pha map we used a chain code, which is possible because
we are representing alpha as a binary image. The motion
parameters can be sent without compression because they
only represent 6 numbers per layer per frame.

We are able to code a 30 frame (1 second) color video se-
quence of the flower garden using 300 kbits for a resolution
of 360 x 240, and 700 kbits for a resolution of 720 x 480.
Thus, the data rates are 300 and 700 kbits/sec respectively.
The affine motion parameters for the sequence required
40 kbits. For the full resolution sequence, the alpha maps
were encoded losslessly with chain codes at 60 kbits and
the color intensity maps encoded with JPEG at 600 kbits.

The only artifacts added by the data compression are
those associated with the JPEG coder, and these are fixed
artifacts that are rigidly attached to the moving layers.
Thus they do not “twinkle” or “shimmer” the way tempo-
ral artifacts often do with traditional coders. At the data
rates noted above, the JPEG artifacts are only slightly vis-
ible with an SNR of 30 dB.

The layered coding process itself can add artifacts re-
gardless of data compression. For example, since the lay-
ered segmentation is imperfect there is a bit of the sky
attached to the edge of the tree, and this becomes visible
when the tree moves over the houses. Also, the affine ap-
proximation of the motion is imperfect so that the synthe-
sized motions of the layers do not perfectly match the ac-
tual motions in the original scene. And the temporal accu-
mulation process can introduce blurring into regions where
the affine warp is incorrect. We believe that all of these
artifacts can be reduced by improvements in the analysis
process. But in any case the reconstructed sequence will
not generally be a perfect replica of the original sequence
even if the layers are transmitted without data compres-
sion. Error images could be sent in order to correct for
the imperfections of the reconstructed images at a cost of
additional data.

It is interesting to note that some of the artifacts asso-
ciated with the layered coding can be severe in the MSE
sense and yet be invisible to the human viewer. For ex-
ample, the naive observer does not know that the flower
bed’s motion is not truly affine. The reconstructed motion
is slightly wrong — and in the squared error sense it is quite
wrong — but it looks perfectly acceptable.

9

Because the layered representation breaks the sequence
into parts that are meaningfully related to the scene it be-
comes possible to achieve some interesting special effects.
Figure 14 shows the flower garden sequence synthesized
without the tree layer. This shows what the scene would
have looked like had the tree not been present; it is a syn-
thetic sequence that has never actually existed. Occluded
regions are correctly recovered because our representation
maintains a description of motion in these regions. Note
that an ordinary background memory could not achieve
the effect because the various regions of the scene are un-
dergoing different motions.

The layered representation also provides frame-rate in-
dependence. Once a sequence has been represented as lay-

Other applications

12

ers it 1s straightforward to synthesize the images corre-
sponding to any instant in time. Slow-motion and frame-
rate conversion can be conveniently done by using the lay-
ered format.

10 Conclusions

We employ a layered image representation that provides
a useful description of scenes containing moving objects.
The image sequence is decomposed into a set of layers,
each layer describing a region’s motion, intensity, shape,
and opacity. Occlusion boundaries are represented as dis-
continuities in a layer’s alpha map (opacity), and there is
no need to represent explicit discontinuities in velocity.

To achieve the layered description, we use a robust mo-
tion segmentation algorithm that produces stable image
segmentation and accurate affine motion estimation over
time. We deal with the many problems in motion segmen-
tation by appropriately applying the image constraints at
each step of our algorithm. We initially estimate the local
motion within the image, then iteratively refine the esti-
mates of object’s shape and motion. A set of likely affine
motion models exhibited by objects in the scene are calcu-
lated from the local motion data and used in a hypothesis
testing framework. Layers are accumulated over a sequence
of frames.

The layered representation can be used for image coding.
One can represent 30 frame sequence of the MPEG flower
garden sequence using four layers, along with affine motion
parameters for each layer; each layer is represented by a
single still image. The layers can be coded using traditional
still frame coding techniques.

The synthesized sequence provides an approximate re-
construction of the original sequence. Ome can achieve
substantial data compression in sequences that lend them-
selves to layered coding. The method is more successful for
sequences that are easily represented by the layered model,
i.e., sequences containing a few regions undergoing simple
motions. We are currently investigating extensions to more
complex sequences.

The layered decomposition also provides useful tools in
image analysis, frame-rate conversion, and special effects.



References

(1]
(2]

[10]

[11]

[12]

[13]

[14]

[15]

E. H. Adelson. Layered representation for image cod-

ing. Technical Report 181, The MIT Media Lab, 1991.
J. Bergen, P. Anandan, K. Hana, and R. Hingorini al.

Hierarchial model-based motion estimation. In Proc.
Second FEuropean Conf. on Comput. Vision, pages
237-252, Santa Margherita Ligure, Italy, May 1992.

J. Bergen, P. Burt, R. Hingorini, and S. Peleg. Com-
puting two motions from three frames. In Proc.
Third Int’l Conf. Comput. Vision, pages 27-32, Os-
aka, Japan, December 1990.

M. J. Black and P. Anandan. Robust dynamic motion
estimation over time. In Proc. IFEFE Conf. Comput.
Vision Pattern Recog., pages 296-302, Maui, Hawaii,
June 1991.

T. Darrell and A. Pentland. Robust estimation of a
multi-layered motion representation. In Proc. IEFE
Workshop on Visual Motion, pages 173-178, Prince-
ton, New Jersey, October 1991.

R. Depommier and E. Dubois. Motion estimation with
detection of occlusion areas. In Proc. IEEF ICASSP,
volume 3, pages 269-273, San Francisco, California,
April 1992.

S. Geman and D. Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images.

IEEE Trans. PAMI, 6(6):721-741, November 1984.

T.S. Huang and Y. P. Hsu. Image sequence enhance-
ment. In T. S. Huang, editor, Image Sequence Analy-
sis, pages 289-309. Springer-Verlag, Berlin, 1981.

M. Irani and S. Peleg. Image sequence enhance-
ment using multiple motions analysis. In Proc. IEEE
Conf. Comput. Vision Pattern Recog., pages 216-221,
Champaign, Illinois, June 1992.

R. Lenz and A. Gerhard. Image sequence coding us-
ing scene analysis and spatio-temporal interpolation.
In T. S. Huang, editor, Image sequence processing and
dynamic scene analysis, volume F2 of NATO ASI Se-
ries, pages 264-274. Springer-Verlag, Berlin, 1983.

A. Lippman and R. Kermode. Generalized predictive
coding of movies. In Picture Encoding Symposium,
pages 17-19, Lausanne, Switzerland, 1993.

B. Lucas and T. Kanade. An iterative image registra-
tion technique with an application to stereo vision. In
Image Understanding Workshop, pages 121-130, 1981.

P. C. McLean. Structured video coding. Master of sci-
ence in media arts and sciences, The Media Lab, Mas-
sachusetts Institute of Technology, Cambridge, MA,
June 1991.

H. G. Musmann, M. Hotter, and J. Ostermann.
Object-oriented analysis-synthesis coding of moving
images. Signal Processing: Image Communication 1,
pages 117-138, 1989.

T. Poggio, V. Torre, and C. Koch. Computational
vision and regularization theory. Nature, 317:314-319,
1985.

13

[16]

[17]

[18]

[19]

[20]

[21]

[22]

L. H. Quam. Hierarchial warp stereo. In Proc. DARPA
Image Understing Workshop, pages 149-155, New Or-
leans, Lousiana, 1984. Springer-Verlag.

M. Shizawa and K. Mase. A unified computational
theory for motion transparency and motion bound-
aries based on eigenenergy analysis. In Proc. IFEF
Conf. Comput. Vision Pattern Recog., pages 289-295,
Maui, Hawaii, June 1991.

L. Teodosio and W. Bender. Salient video stills. In
Proc. of the ACM Multimedia Conference, Anaheim,
CA, August 1993.

C. W. Therrien. Decision Fstimation and Classifica-
tion. John Wiley and Sons, New York, 1989.

J. Y. A. Wang and E. H. Adelson. Layered repre-
sentation for image sequence coding. In Proc. IEEE
ICASSP, volume 5, pages 221-224, Minneapolis, Min-
nesota, April 1993.

J. Y. A. Wang and E. H. Adelson. Layered repre-
sentation for motion analysis. In Proc. IFEE Conf.
Comput. Vision Pattern Recog., pages 361-366, New
York, June 1993.

J. Y. A. Wang, E. H. Adelson, and U. Y. Desai. Ap-
plying mid-level vision techniques for video data com-
pression and manipulation. In Proc. SPIE on Digi-
tal Video Compression on Personal Computers: Algo-
rithms and Technologies, volume 2187, pages 116—127,
San Jose, California, February 1994.



