Chapter 2

Pixel-based image processing

We begin our tour of computer vision by considering some basic operations that can be performed
on an image. These techniques will enable us to achieve some interesting results without requiring
much mathematical background. They will also serve as a foundation upon which we can build in later
chapters when we look at more sophisticated methods.

2.1 What is an image?

An image is simply a two-dimensional array of values, much like a matrix. In the case of a grayscale
image, the values are scalars indicating the intensity of each pixel, while for a color image the values are
triples containing the values of the three color channels: red, green, and blue. Usually there are eight
bits per channel, leading to images with one byte per pixel (grayscale images) or three bytes per pixel
(color images). Larger values indicate more light intensity, so for an 8-bit grayscale image, 0 represents
black and 255 represents white. Using hexadecimal notation, these are 0x00 and 0xFF, respectively.
For an RGB color image, 0x000000 is black and OxFFFFFF is white. Some specialized applications such
as medical imaging require more quantization levels (e.g., 12 or 16 bits) to increase the dynamic range
that can be captured, but the same techniques can be applied with only slight modification. We adopt
the convention in this book that images are accessed by a pair of coordinates (x,y) with the positive x
axis pointing to the right and the positive y axis pointing down, so that x specifies the column and y
specifies the row, and (0,0) indicates the top-left pixel.

Figure 2.1 shows an 8-bit-per-pixel grayscale image of some objects on a conveyor belt. Such
images are common in manufacturing environments, where machine vision techniques play an important
role in ensuring that the parts being manufactured are without defects, are sorted into the proper bins,
and so on. For such applications, we might want to isolate the objects from the background and compute
properties of the objects for the purpose of classifying and manipulating them. This image will serve as
a motivation for this chapter, enabling us to explore many techniques that are useful for such problems.

2.2 Histograms
Let L represent the number of gray levels (i.e., the number of possible intensity values) of a grayscale
image. That is, each pixel is assigned a value 0,...,L — 1. For an 8-bit image L = 256, so that each

pixel’s value is between 0 and 255, inclusive. An important concept is the gray-level histogram, which
is a one-dimensional array that stores for each gray level the number of pixels having that value:

Wkl =np, k=0,...,L—1,
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Figure 2.1: An 8-bit grayscale image of several types of fruit on a dark background (conveyor belt).

where ny is the number of pixels in the image with gray level k. Represented mathematically, ny is the
cardinality of the set of pixels whose intensity is k, i.e., ny = |{p : I(p) = k}|, where p = (z,y) is a
pixel in the image I. The histogram can be thought of as a summary of the image, in which all spatial
information has been discarded. The computation of the histogram is straightforward: We simply visit
all the pixels and keep track of the count of pixels for each possible value.

COMPUTEHISTOGRAM()

1 fork—0toL—-1do

2 hlk] <0

3 for (z,y) € I do

4 h[I(z,y)] — hlI(z,y)] +1
5 return h

In this code the image I is treated both as a set, so that (z,y) € I means a pixel in the image, and as
a function, so that I(x,y) yields the gray level of pixel (x,y). The arrow pointing to the left indicates
assignment, and the bracket operator is used to access a particular value within the array h.

Once the histogram has been found, the normalized histogram h,,[k] = h[k]/n, £ =0,...,L—1
is computed by simply dividing each value in the histogram by n, where n is the total number of pixels
in the image. The normalized histogram is the probability density function (PDF) capturing the
probability that any pixel drawn at random from the image has a particular gray level.! Note that
while h[k] is an integer, h,[k] is a floating point value.

COMPUTENORMALIZEDHISTOGRAM(T)

h <+ COMPUTEHISTOGRAM(I)
n «— width * height
for k—0to L—1do

hlk] < hlk]/ n

return h

Uk W N

This code, like the regular histogram, requires just a single pass through the image. The variable n holds
the number of pixels in the image, which is the image width times the image height. The normalized
histogram of the fruit image is given in Figure 2.2.

The histogram is related to the contrast in an image: A flat histogram indicates that the gray
levels are equally distributed throughout the image, thus maximizing the options available; while a

ITechnically, since the image is discrete, hy, is a probability mass function (PMF), but we will refer to it as a PDF to
simplify the discussion since the distinction is not important for our purposes.
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Figure 2.2: The normalized gray-level histogram of the image in Figure 2.1.

peaked histogram indicates an image whose values are all nearly the same. Given a low-contrast image,
a common technique for increasing contrast is to more evenly distribute the pixel values of an image
across the range of allowable values. This approach is known as histogram equalization. The
algorithm first converts the PDF (captured by the normalized histogram) to a cumulative distribution
function (CDF) by computing a running sum of the histogram:

k
clk] =D hnlll, k=0,...,L-1. (2.1)
£=0

The running sum can be computed efficiently, of course, by setting ¢,[0] = h,[0] and c,[k] = cp[k —
1]+ hnplk],E =0,..., L —1. Once the CDF has been computed, a pixel with gray level k is transformed
to k' = (L — 1)c,[k]. Note that ¢,[L — 1] = 1, so the output 0 < k' < L — 1 as desired.

HISTOGRAMEQUALIZE(])

hy, < COMPUTENORMALIZEDHISTOGRAM(])
cn[0] = han[0]
for k — 1 to 255 do

cnlk] — cnlk — 1] + hy[K]
for (z,y) € I do

I(z,y) < ROUND((L — 1) * ¢, [I(,y)])
return J

~N O Uk W N

Why does such a simple algorithm work? In other words, what is Line 6 (which is the heart of
the program) doing? To answer this question, consider the example shown in Figure 2.3, in which we
assume that the gray levels are continuous for simplicity. The desired PDF p’(k), which is the normalized
histogram of the gray levels of the output image, should be flat, i.e., f;,/H p' (k)dk should be constant for
any gray level a’ and any given constant §. Since the algorithm uses the scaled CDF ¢(k) of the original
histogram to transform gray levels, this transformation is visualized in the lower-left plot of the figure,
with a gray level k along the horizontal axis transforming to a new gray level ¢ = g(k) along the vertical
axis. Since ¢ is the scaled integral of p, we see that the area under the PDF for any interval corresponding

to an output interval of § is qu,ll((aa,l)%) p(k)dk = q(¢ *(a’ +0)) —q(g7(a’)) =a’ +6 —a’ = 6. In other
words, equally spaced intervals of width § along the axis of the new PDF capture equal numbers of
pixels in the original PDF. The CDF thus provides a simple means of ensuring that an equal number
of pixels contribute to an equally spaced interval in the output, if the variable k were continuous. Of
course in practice the algorithm only produces an approximately flat output because of discretization

effects. Figure 2.4 shows the results of histogram equalization.
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Figure 2.3: Why histogram equalization works. In this example, the histogram of the original image is
heavily weighted toward darker pixels. If we let the CDF be the mapping from the old gray-level value
to the new one, the new PDF is flat and therefore weights all gray levels equally. This is because any
interval of width ¢ in the new histogram captures the same number (4) of pixels in the original image.
Note that discretization effects have been ignored for this illustration.
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Figure 2.4: LEFT: The result of histogram equalization applied to the image in Figure 2.1. The
increase in contrast is noticeable. RIGHT: The normalized histogram of the result is much flatter than
the original histogram, but it is not completely flat due to discretization effects.

2.3 Thresholding a grayscale image

Often one wishes to separate the foreground from the background in a grayscale image. A common
example is separating parts on a conveyor belt from the conveyor belt itself. This is a simple form of
segmentation, and it also appears in the context of background subtraction in which motion information
is thresholded to detect moving foreground objects.

Thresholding an image involves simply setting all the pixels whose values are above the threshold
to 1, while setting all pixels whose values are less than or equal to the threshold to 0. The result is a
binary image that separates the foreground from the background. We will adopt the convention that
0 (which we shall call OFF) indicates the background, while 1 (which we shall call ON) indicates the
foreground. Do not be confused, though, because sometimes the foreground will be displayed as black
on a white background (as on paper, for example), while at other times you will see a white foreground
displayed on a black background (on a computer monitor). Also, it is common implementation practice
to store a 1 in every bit for a foreground pixel, so that OxFF instead of 0x01 is stored; but this
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implementation detail will not affect our discussion.

2.3.1 Ridler-Calvard algorithm

The difficult part of thresholding is determining the correct threshold. Recalling the histogram shown
in Figure 2.2, we see that a good threshold is one which separates two modes of the histogram, i.e.,
the threshold should lie in a valley between two hills (approximately k& = 130 in this case). A simple
iterative algorithm to achieve this is the Ridler-Calvard algorithm. Let ¢ be a threshold, and let 4 be
the mean gray level of all the pixels whose gray level is less than or equal to ¢, while uy is the mean
gray level of all the pixels whose gray level is greater than ¢. (Assuming the background is darker than
the foreground, then u4 is the mean of the background pixels, and py is the mean of the foreground
pixels.) It is easy to show that uq = mq[t]/mo[t], where mg[k] = Z?:o h[f] is the zeroth moment of the
histogram h from gray level 0 to k, and m4[k] = Zif:() kh[l] is the first moment. We will cover moments
in more detail later in the chapter. For now, note that mg is just the cumulative normalized histogram
¢n, scaled so that mo[L — 1] is the number of pixels in the image. Since mg and m; are running sums,
the zeroth moment of the pixels from gray level k + 1 to L — 1 is simply mo[L — 1] — mg[k], and the
first moment is just mq[L — 1] — mq[k]. Putting these together yields a simple expression for the mean
of the second set of pixels: py = (m1[L — 1] — mq[t])/(mo[L — 1] — mo[t]).

The Ridler-Calvard algorithm iteratively computes the two means based on the threshold, then
sets the threshold ¢ to the average of the two means. Although iterative algorithms usually require a
good starting point, this algorithm is powerful because in practice any initial value will converge to the
same solution.

RIDLER-CALVARD(I)

1 h < COMPUTEHISTOGRAM(])

2 mol0] « h[k]

3 my[0] — k * h[k]

4 fork—1toL—-1do

5 molk] — molk — 1] + h[k]

6 milk] — ma[k — 1] + k * h[k]

7T t— L/2 ; reasonable initial guess, but not important
8 repeat

9 [ia < mut]/molt]
10 ps = (ma[L — 1] = mq[t])/(mo[L — 1] = molt])
11 t « ROUND (3(paq+ i)

12 until ¢ does not change
13 returnt

This classic algorithm requires one pass through the image to compute the histogram, then one pass
through the histogram to compute mo and mq, followed by a small number of iterations (usually less
than 5) consisting only of constant-time operations. Note in Line 1 that the normalized histogram could
be used instead of the regular histogram since the divisions in Lines 9 and 10 cancel the scaling factor.
But since the exact same ¢ value will result either way, we might as well use the regular histogram to
save the expense of having to normalize the histogram.

The algorithm is based on the assumption that the foreground and background gray level in-
tensities are distributed as Gaussians with equivalent standard deviations. In such a case, the optimal
decision boundary occurs where the two distributions cross:

e A B £ 22)
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where 11q and p are the mean gray levels of the two groups of pixels. Solving this equation for ¢ yields

(ta + pi>)

t =
2 )

(2.3)

which appears in Line 11 of the algorithm. This derivation illustrates an important point in the
design and analysis of image processing algorithms, namely, that algorithms often make statistical
assumptions whether they are explicitly acknowledged or not. Therefore, specifying the assumptions
explicitly enables the algorithm to be separated from the model, thus often yielding new insight into
the problem. In this case the analysis reveals that Ridler-Calvard assumes that the foreground and
background variances are identical.

2.3.2 Otsu algorithm

Ridler-Calvard assumes that the background and foreground regions have the same variance in intensity.
If we relax this assumption and instead allow the two regions to have different variances, we arrive at the
Otsu algorithm. The goal of Otsu is to find the threshold ¢ that minimizes the within-class variance,
which is defined as the weighted sum of the variances of the two groups of pixels:

(1) = Pa(t)oQ(t) + o ()L (1), (2.4)

where ¢ is the unknown threshold, p4(t) = Z;ZO hn[€] = mo[t]/mo[L — 1] is the proportion of pixels
whose gray level is less than or equal to ¢, uq = mi[t]/mo[t] is their mean intensity, and o%(t) =
Z?:o(hn [(] — 114)? is their variance in intensity. The other variables represent analogous quantities for
the remaining pixels. It is easy to show that the sum of the within-class variance and the between-class
variance is the total variance of all the pixel intensities: o2 (t) + 0Z(t) = 02, where the between-class
variance is defined as:

Ulg(t) = pa(t) (n<(t) — M)2 + i () (= (£) — M)2 ) (2.5)

where p = m[L — 1]/mo[L — 1] is the mean gray level of all the pixels. Since the total variance o

does not depend on the threshold ¢, minimizing o2, is the same as maximizing o?. The advantage of
the latter is that it is dependent only upon first-order properties (means) rather than second-order

properties (variances), thus making it easier to compute.

From the above, we see that for a given value of ¢, pq(t) = mg[t]/mo[L — 1] while ps (t) =
(molL — 1] — mol[t])/mo[L — 1], because p4(t) + ps(t) = 1. Substituting these values, along with
14(t) = ma[t]/mo[t], and ps (t) = (u—ma[t])/(mo[L—1]—myg[t]) into the equation above and simplifying
yields

(ma[t] = pmelt])?
mo[t](mo[L — 1] — molt])”

o2(t) = (2.6)

The Otsu algorithm iterates through all possible thresholds ¢ to find the one that maximizes this
quantity.
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Figure 2.5: From left to right: Input image, output of Rider-Calvard, and output of Otsu. The outputs
are almost indistinguishable.

OTsu(l)

1 h < COMPUTEHISTOGRAM(])

2 mg[0] « hlk]

3 my[0] — k * h[k]

4 fork—1toL—1do

5 molk] < molk — 1] + h[k]

6 milk] — ma[k — 1] + k = h[k]
7T w—mq[L—1]/mo[L —1]

8 620

9 fork—O0OtoL—-1do

10 o — (malk] — pmolk])* / (molk] * (mo[L — 1] — mo[k]))
11 if o7 > 67 then

12 62 — o2

13 t—k

14 returnt

The Otsu algorithm begins with the same precomputation as Ridler-Calvard, and it also can be per-
formed with either the standard histogram or the normalized histogram, since the division in Lines 7
and 10 cancel the normalization. The difference between the two algorithms is that Otsu performs an
exhaustive search over all possible L = 256 thresholds rather than iteratively converging on a soution
from a starting point. Otsu requires one pass through the image, then two passes through the histogram.
The algorithm illustrates the principle that a more general model offers more degrees of freedom but
also requires more computation to search for the correct solution (but in this case the extra work is
almost negligible). Figure 2.5 shows a comparison of the outputs of Ridler-Calvard and Otsu on the
fruit image.

The careful reader may notice that the description here is the original formulation of the Otsu
algorithm, which does not require recursive relations. Often the algorithm is described using recursive
relations, but we have avoided them here because they complicate the algorithm for no reason.

2.4 Morphological operations

Morphological processing refers to changing the form or structure of a region in an image. We will look
only at binary images, though the concepts presented here can be extended to gray-level images.

Copyright (c) 2011 Stanley T. Birchfield. All rights reserved.
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2.4.1 Erosion and dilation

The two fundamental morphological operations are erosion and dilation. Let A be a binary image, and
let B be a binary mask. Typically A is much larger than B, because A is the size of the original image,
while B is on the order of 3 x 3 or 5 x 5. The pixel values in each are either ON (stored by the computer
as 1) or OFF (stored as 0). Now suppose we overlay B so that the center of B is on top of some pixel
(z,y) in A. We set the value at the corresponding output binary image C(x,y) to ON if there is an ON
pixel in A under all of the ON pixels in B; otherwise we set the output pixel to OFF. If we repeat this
procedure by sliding B across A both horizontally and vertically, computing an output for each pixel in
A, the result will be a binary output image C that is the erosion of A by the structuring element
B. Ignoring border effects, C' will be the same size as A.

Now suppose that, instead of computing the value in the manner just described, we set the value
of the output pixel to ON if there is an ON pixel in A under at least one of the ON pixels in E, where B
refers to a binary mask created by flipping B horizontally and vertically. Then the output is called the
dilation of A by B.

Dilation and erosion are duals of each other with respect to complementation and reflection
(flipping). Using the notation A © B to refer to erosion and A @& B to refer to dilation, we have
(AS B) = A® B, where the overbar indicates binary complementation. The code for both erosion and
dilation is straightforward:

ERODE(I, B)

1 for (z,y) € I do

2 all < ON

3 for (2/,y’) € B do

4 if B(z',y') AND NOT I(z + ' — [“& ],y +y — | 2&])
5 then all «— OFF

6 C(z,y) « all

7 return C

DiLaTE(I, B)

1 for (z,y) € I do
2 any «— OFF

3 for (z/,y’) € B do

4 if B(z',y') AND I(z — 2/ + %],y —y' + [%£])

b) then any «— ON

6 C(z,y) «— any

7 return C

In this code, note that 2’ = 0,...,wg — 1, and ¥’ = 0,...,hg — 1, where wp and hp are the width

and height of B, respectively. If the size of B is odd (as is common), then the floor of the half-width
and half-height simplify to |2 ] = “’52*1 and LhTBJ = % The flipping of B in DILATE has been
accomplished by changing the signs in Line 4.

While the structuring element is allowed to be any arbitrary binary pattern, it is often a 3 x 3
matrix of all ones, Bg, or a 3 x 3 cross of ones, B4. In such a case the symmetry of B allows one
to ignore the flipping in the formulas above because B = B, and the structure of B allows the code
to be greatly simplified. In the case of By, for example, we can replace the code in the outer for loop

(Lines 2—-6) with one line, leading to the following:

ERODE_B4([)

1 for (z,y) € I do
2 C(z,y) < I(z,y) AND I(x — 1,y) AND I(z +1,y) AND I(z,y — 1) AND I(z,y + 1)
3 return /

Copyright (c) 2011 Stanley T. Birchfield. All rights reserved.
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B B

Figure 2.6: Neighborhoods: Ny, Ng, and Np.

DiLATE_B4([)

1 for (z,y) € I do
2 C(z,y) < I(z,y) or I(z —1,y) OR I(z + 1,y) OR I(z,y — 1) OR I(z,y + 1)
3 return

This is the first algorithm we have considered that uses neighbors of pixels to compute a result. A
pixel ¢ is a neighbor of pixel p if ¢ is in the neighborhood of p: ¢ € N(p), where A is the neighborhood
function. The most common neighborhoods used in image processing are shown in Figure 2.6:

e the 4-neighborhood, denoted by A, which is a set consisting of the four pixels to the left, right,
above, and below the pixel; and

e the 8-neighborhood, denoted by Ng, which is Ny|JNp, where Np are the four pixels diagonal
from the pixel.

Note that in the structuring element By, the pixels that are ON are the central pixel and its 4-neighbors,
while the pixels in Bg that are ON are the central pixel and its 8-neighbors.

Any algorithm that uses neighbors must decide what to do when those neighbors do not exist.
For example, when the structuring element is centered near the boundary of the image, some of its
elements will be extend past the image A and be out of bounds. There is no agreed-upon solution for
this problem, but common ways to handle out-of-bounds pixels include:

e Zero pad. Keep the structuring element (kernel) in bounds at all times and set the output pixels
near the boundary to zero (or some other arbitrary value). This is the fastest and simplest solution
and works fine if you do not care what happens near the border.

e Resize the kernel. Near the border, shrink the kernel so that it does not extend past the image
border. For example, if you have a 3 x 3 kernel of all ones, you might want to use a 2 x 3 kernel
of all ones near the left and right border, a 3 x 2 kernel near the top and bottom borders, and
2 x 2 kernels (with the center placed appropriately) near the four corners.

e Hallucinate values outside the image. The most common approaches are replicate (out of bounds
pixels are assigned the value of the nearest pixel in the image), reflect (image values are mirror-
reflected about the image border), and wrap (image values are extended in a period wrap, which
is what the discrete Fourier transform does implicitly).

2.4.2 Opening and closing

Two additional morphological operations are opening and closing. Opening is just erosion followed by
dilation: Ao B = (A © B) @ B, while closing is dilation followed by erosion: Ae B = (A ® B) © B.
Opening and closing are also duals of each other: (Ae B) = (Ao B) Repeated applications of opening
or closing do nothing: (Ae B)e B = Ae B, and (Ao B)o B = Ao B. An example of applying various
morphological operations to a binary image (obtained by thresholding a background subtraction result)
is shown in Figure 2.7.
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Figure 2.7: A binary image and the result of morphological operations: Erode, dilate, open, and close.

2.5 Finding regions

We have seen that thresholding is able to produce a binary image, and that morphological operations
are useful for cleaning up noise in the result. Another important step is to be able to find a region in
the binary image, which is a set of connected pixels. Pixels are said to be connected (or contiguous)
if there exists a path between them, where a path is defined a sequence of pixels pg, p1,...,pn_1 such
that p;—_; and p; are adjacent for all ¢ = 1,...,n — 1. Two pixels in a binary image are said to be
adjacent if they have the same value (0 or 1) and if they are neighbors of each other. Thus, the type
of neighborhood determines the type of adjacency. Not surprisingly, the two most common adjacencies
are 4-adjacency and 8-adjacency:

e Two pixels p and ¢ in an image I are /-adjacent if I(p) = I(q) and q € Ny(p);
e Two pixels p and ¢ in an image I are 8-adjacent if I(p) = I(q) and q € Ng(p).

There is also something called m-adjacency which we will define later in this section. For all adjacencies,
it is assumed that the neighborhood relations are symmetric, so that ¢ € N(p) if and only if p € N(q)
for any neighborhood N

Although the definitions above are given in terms of a binary image, they can be easily generalized
to a grayscale or color image. The simplest generalization is to consider two pixels adjacent if they have
the ezact same gray level or color. This is the scenario that we shall consider in this chapter. Other
definitions, in which pixels must have similar gray levels or colors, introduce significant complications
which we shall consider when we look at the topic of segmentation in Chapter 7.

2.5.1 Floodfill

Floodfill is the problem of coloring all the pixels that are connected to a seed pizel. Several algorithms
exist for performing floodfill. The most compact to describe is based upon repeated conditional dilations,
but it is terribly inefficient and only applies to binary images. Another approach that is often taught is
one that uses recursive calls, but this algorithm is never used in practice because recursive calls not only
incur function overhead (thus decreasing computational efficiency) but, even more importantly, they
often cause the stack to be overrun, thus causing the program to crash. This is true even on modern
computers because it is not uncommon for floodfilled regions to contain tens of thousands of pixels.
Therefore, we will not take the time to describe these approaches further.

The most computationally efficient approach, and yet still simple to describe, overcomes these
problems by using a stack of pixels called the frontier. The algorithm takes a seed pixel p = (z,y), a
new color, and an image, and it colors the pixels in place. By “color,” we mean a red-green-blue triplet
for an RGB image, or a graylevel 0 < k < L — 1 for a grayscale image. In the initialization, the original
color of the seed pixel p is grabbed, the seed pixel is colored with the new color, and the coordinates
of p are pushed onto the frontier. Then the algorithm repeatedly pops a frontier pixel off the stack
and expands all the adjacent pixels (the neighbors that still have the original color), where expansion
involves setting the pixel to the new color and pushing its coordinates onto the frontier. The algorithm
terminates when the frontier is empty.
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FLOODFILL(Z, p, new-color)

—_

orig-color — I(p)
frontier.push(p)
I(p) < new-color
while NOT frontier.isEmpty() do
p <« frontier.pop()
for ¢ € N(p) do
if I(q) == orig-color
then frontier.push(q)
1(q) < new-color

—
O © 0O Uk WD

return |

In this code N (q) is the set of neighbors of ¢, and typically either 4-neighbors or 8-neighbors are used.
The double equal signs in Line 7 test for equality. The algorithm performs a depth-first search, since
the frontier stack supports only LIFO (last-in-first-out) operations. If the stack is replaced by a queue,
then the FIFO (first-in-first-out) operations will cause a breadth-first search instead, but the output
will be the same either way, so we use a stack because its memory management is simpler.

Variations on the algorithm are easy to obtain by making minor modifications to this basic
pseudocode. One common variation is to leave the original input image intact and instead to change an
output image. The algorithm below implements this variation, setting each pixel O(z,y) in the output
if the pixel I(x,y) in the input would have been changed by the previous algorithm. This version of
the algorithm will be used in the next section on connected components, as well as in Chapter 7 on
segmentation. It does not return a value, since it operates on the output image that is passed into the
procedure.

FLOODFILLSEPARATEOUTPUT(I, O, p, new-color)

orig-color — I(p)
frontier.push(p)
O(p) « new-color
while NOT frontier.isEmpty() do
p « frontier.pop()
for ¢ € N(p) do
if I(q) == orig-color
then frontier.push(q)
0(q) <« new-color

© 00~ O Tk Wi+

2.5.2 Connected components

Recall that two pixels are said to be connected if there is a path between them consisting of pixels
all having the same value. A connected component is defined as a maximal set of pixels that are all
connected with one another. It is often useful to be able to find all the connected components in an
image, for example to separate the various foreground objects in a binary image. Given a binary image
with ON pixels signifying foreground and OFF pixels indicating background, the result of a connected
components algorithm is a two-dimensional array (the same size as the image) in which each element
has been assigned an integer label indicating the region to which its pixel belongs. That is, all the pixels
in one contiguous foreground region are assigned one label, while all the pixels in a different contiguous
foreground region are assigned a different label, all the pixels in a contiguous background region are
assigned yet another label, and so forth. Thus, connected components is a partitioning problem, because
it assigns the image pixels to a relatively small number of discrete groups.
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Figure 2.8: Step-by-step illustration of the 4-neighbor FLOODFILL algorithm on a small image. The
frontier is shown below the image. Starting from the seed pixel labeled 1, the interior region of white
pixels is changed to orange by the algorithm, while red is used to indicate the pixels being considered
in the current expansion. The labels are artificially introduced to aid in associating pixels in the image
with those in the frontier.

One way to implement connected components is by repeated applications of floodfill, starting
from a new unlabeled pixel as the seed point for each iteration. Initially the output array L is created
to be the same size as the input image, all elements in this output array are unlabeled, and a global
label is set to zero. Then the image is scanned, and whenever a pixel is encountered that has not yet
been labeled, floodfill is applied to the image with that pixel as the seed pixel, filling the elements in
the output array with the global label. The global label is then incremented, and the scan is continued.
This relatively simple procedure labels each pixel with the value of its contiguous region. One advantage
of this algorithm is that the regions are labeled with consecutive labels of 0,1, 2, ... so that the number
of regions found is the global label minus one.

CONNECTEDCOMPONENTSBYREPEATEDFLOODFILL(!)

for (z,y) € L do
L(z,y) < UNLABELED
next-label «— 0
for (z,y) € L do
if L(x,y) == UNLABELED then
FLOODFILLSEPARATEOUTPUT(I, L, (z,y), next-label)
next-label «— next-label +1

0O Ui Wi+

return [,

A more common approach, sometimes known as the classic connected components algorithm,
involves scanning the image twice. In the first pass, the image is scanned from left-to-right and from
top-to-bottom, and all the pixels are labeled with preliminary labels based on a subset of their neighbors.
For 4-neighbor connectedness, the algorithm compares a pixel with its two neighbors above and to the
left; for 8-neighbor connectedness, the pixel is also compared with the two neighbors diagonally above-
left and above-right (see Figure 2.9). While performing the preliminary labeling, an equivalence table
is built to keep track of which preliminary labels need to be merged. In the second pass, the label of
each pixel is set to the equivalence of its preliminary label, using the equivalence table. This approach
is also known as a union-find algorithm because it performs the two operations of finding regions and
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Figure 2.9: Masks for the 4-neighbor and 8-neighbor versions of the classic union-find connected compo-
nents algorithm. The red pixels are neighbors of the central pixel that are examined by the algorithm.

merging them. It is the first algorithm we have considered where the order in which the pixels are
processed matters.

CONNECTEDCOMPONENTSBYUNIONFIND(])

1 ; first pass
2 for y < 0 to height — 1 do
3 for z — 0 to width — 1 do
4 v I(z,y)
5 if v==1I(x—1,y) AND v == I(z,y — 1) then
6 L(z,y) « L(x — 1,y)
7 SETEQUIVALENCE(L(x — 1,y), L(z,y — 1))
8 elseif v == I(z — 1,y) then
9 L(z,) — L(z - 1,y)
10 elseif v == I(z,y — 1) then
11 L(z,y) <« L(x,y — 1)
12 else
13 L(z,y) <« next-label
14 next-label — next-label +1

15 ; second pass

16 for (z,y) € L do

17 L(z,y) — GETEQUIVALENTLABEL(L(z, y))
18 return [

An example of this 4-connected version of the algorithm at work can be seen in Figure 2.10. The
output on a real image is displayed in Figure 2.11. To extend the code to 8-neighbors, simply insert two
additional tests comparing the pixel with its neighbors I(x — 1,y — 1) and I(z+ 1,y — 1). Equivalences
are set between any of the four neighboring pixels (left, above, above-left, and above-right) with the
same value as the pixel. Note that out-of-bounds accessing has been ignored; to turn this pseudocode
into executable code, bounds checking must be added in the if and elseif clauses, so that the top-left
pixel (0,0) in the image falls through to the else clause, and all remaining pixels along the top row and
left column are only compared with existing pixels.

The algorithm relies on two helper functions. The first function, SETEQUIVALENCE, sets the
equivalence between two labels, storing the equivalence in a one-dimensional array of integers, equiv.
The array is initialized with its own indices, i.e., equiv[i] < 4 for all i. The convention is adopted
that equiv[i] < i, to avoid creating cycles in the data structure. (It is assumed that the array grows
dynamically in size or is created large enough to hold the total number of labels encountered.)

SETEQUIVALENCE(a, b)

a’ «— GETEQUIVALENTLABEL(a)
b — GETEQUIVALENTLABEL(b)
if o’ > b then

equivia’] «— v’
else

equiv[b'] — a’

ST W N

Copyright (c) 2011 Stanley T. Birchfield. All rights reserved.



2.5. FINDING REGIONS 28

1(1]11[1]1 o(ofo|j0]|0O o(ofofoj|o
1 1/1|1]1]0 111(1]1]0
1(1]1[1]1 2|12(2(2]0 o(ofofoj|o
1 3133 ]|2|4 3|13|3]|0/4
111]1 3|15(5(2]4 3/0(0]0 |4

lof1]2]

0[1]2
000
Figure 2.10: Classic union-find connected components algorithm on an example binary image. From left
to right: The input image, the labels after the first pass, and the labels after the second pass. Below the
image is the equivalence table, with green arrows pointing from a label to its equivalent label. Notice

that the final image contains gaps, for example no pixel is labeled 2.

The second helper function, GETEQUIVALENTLABEL, returns an equivalent label simply by accessing
the array, using recursion to ensure that the smallest possible label has been found. While getting an
equivalent label, the array is updated with the smallest possible equivalent label. An alternative is to
traverse the equivalence table once between the two passes, after which GETEQUIVALENTLABEL(a) can
simply call return equiv|a] without having to resort to recursion.

GETEQUIVALENTLABEL(a)
1 if a = GETEQUIVALENTLABEL(a) then

2 return a

3 else

4 equiv[a] < GETEQUIVALENTLABEL(equiv|a))
5 return equiv|al

Both algorithms for connected components are linear in the number of pixels. To be more
precise, the union-find algorithm applied to an image with n pixels is O(na(n)), where a(n) is the
inverse Ackerman function that grows so extremely slowly that a(n) < 4 for any conceivable image (one
with fewer than a googol of pixels, for example). The four-neighbor floodfill version requires touching
most pixels seven times (to set the output to UNLABELED in the initialization, to check whether the
pixel has been labeled, and 5 times during the floodfill to set the pixel and check its label from the four
directions); pixels along the border of two regions may require slightly more. The union-find algorithm
involves touching each pixel just four times (the first pass, the second pass, and the check from the pixels
to its right and below). Thus, in practice the union-find algorithm is usually slightly more efficient in
run time despite the additional computation required by the equivalence table. However, one drawback
of union-find is that it leaves gaps in the labels. That is, the final result might have (as in the example
of Figure 2.10) a region 1 and a region 3, but no region of pixels labeled 2. This inconvenience can be
removed by another pass through the equivalence table to produce a new equivalence table in which
the base labels are sequential.

With either algorithm, it is easy to compute properties of the regions found such as area, moments,
and bounding box. All of these quantities can be updated during the connected components algorithm
with appropriate calculations each time an output pixel is set, with minimal overhead.

2.5.3 Wall follow

Given a contiguous region of pixels found by a floodfill or connected components algorithm, it is often-
times useful to find its boundary. We distinguish between the exterior boundary, which is the smallest
set of connected pixels that encloses all the pixels in the region, and the interior boundary, which is
the smallest set of connected pixels that encloses all the holes (if any) inside the region. If the region
contains no holes, then the interior boundary is null. We refer to the union of the exterior and interior
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Figure 2.11: Because the connected components algorithm assumes neighboring pixels have the exact
same value, it works best on images with a small number of values. Shown here are an input image
quantized to four gray levels (left) and the result of connected components (right), pseudocolored for
display.

boundaries as the complete boundary. In each case, we use inner boundary to refer to the pixels in the
region that are adjacent to some pixel not in the region, while the outer boundary refers to pixels out
of the region that are adjacent to some pixel in the region.

Let R be a region represented as a binary image, that is R(p) = ON if p is in the region, and
R(p) = OFF otherwise, where p = (z,y) is a pixel. The inner complete boundary of the region can be
computed easily enough by simply computing the difference between the region itself and an eroded
version of the region:

R & (RO B), (2.7)

where the ampersand & indicates the logical AND operator, and the over line indicates the binary
complement. See Figure 7?. That is, each pixel in the output is ON if and only if the corresponding pixel
in R is ON but in the eroded version is OFF. Although the outer complete boundary can be computed
in a similar manner using dilation, (R @ B) & R, its usefulness is limited because outer boundaries
cannot easily be represented for any region that touches the image border. Either way, the choice of
the structuring element B will affect the result: B, will produce a 4-connected boundary, whereas Bg
will produce an 8-connected boundary.

While morphology provides a conveniently compact description of the boundary, procedures
based on morphology — such as the one in (2.7) — only return the set of pixels on the boundary.
However, for some applications it is necessary to compute the boundary as a path, i.e., as a sequence
of pixels. One common use of such a sequence is to calculate the perimeter of a region, which we shall
explore in a moment. A simple procedure for computing the boundary of a region as a path is the wall
following algorithm. The wall following algorithm derives its name from the analogy of a person
desiring to traverse the edges of a room blindfolded. By holding out his left arm stiff to the side and
his right arm stiff in front, the person continually walks straight until either contact with the left wall
has been lost (in which case the person turns left) or the person detects a wall in front (in which case
the person turns right). In a similar manner, the wall following algorithm traverses the boundary of a
region by examining pixels in front and to the left, turning appropriately based upon the values of the
pixels. The algorithm below computes the clockwise inner boundary — other variations can be easily
obtained from this one.
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Figure 2.12: Freeman chain code directions for 4- and 8-neighbors.

WaLLFoLLow([)

1 p« py < FINDBOUNDARYPIXEL(])

2 dir<—20

3 while FroNT(I, p, dir) == ON do

4 dir «— dirg <— TURNRIGHT(dir)

5 repeat

6 boundary-path . PUSH(p)

7 if LEFT(I,p, dir) == ON then

8 dir «— TURNLEFT(dir)

9 p < MOVEFORWARD(p, dir)
10 elseif FRONT(I,p, dir) == OFF then
11 dir +— TURNRIGHT(dir)

12 else
13 p < MOVEFORWARD(p, dir)

14 until p == pg AND dir == dirg
15 return boundary-path

We adopt the convention of the Freeman chain code directions, shown in Figure 2.12; in which the
list of directions proceeds counterclockwise starting from the right (positive = axis). For 4-neighbor
connectedness, dir takes on values in the set {0, 1,2, 3}, while for 8-neighbor connectedness, dir takes on
values of {0,1,...,7}. Therefore, in the code TURNLEFT and TURNRIGHT return the next and previous
direction in the list, respectively, using modulo arithmetic: TURNLEFT(dir) returns (dir —1)mod z,
while TURNRIGHT(dir) returns (dir +1) mod z, assuming z-neighbor connectedness. MOVEFORWARD
computes the pixel attained after moving forward according to the current direction and the current
pixel. Recalling that the y axis points down, this means MOVEFORWARD(p, 0) returns p + (1,0), and
MOVEFORWARD(p, 1) returns p + (0, —1) if z = 4 or p+ (1,—1) if z = 8. The function LEFT returns
the pixel immediately to the left as one faces the current direction. For example, assuming z = 4,
LEFT(I,p,0) returns I(p + (0,—1)), that is, the pixel directly above p in the fixed image coordinate
system.

While the algorithm is very simple, careful attention must be paid to the starting condition. To
ensure that FINDBOUNDARYPIXEL returns one of the pixels on the exterior boundary of the region, it
is best to start at the boundary of the image and search until a pixel in the region is found. In contrast,
starting from an arbitrary pixel inside the image or region may yield an interior boundary pixel rather
than an exterior boundary pixel, in which case the rest of the algorithm will mistakenly trace a hole
rather than the exterior boundary. However, for the ending condition, it is necessary (as shown in
the code) to test for pixel location and direction to handle the case of a single-pixel-thick bridge or
protrusions.

Wall following is useful for several tasks. First, to compute the perimeter of a region, apply
the 8-neighbor version of WALLFOLLOW, then compute the distance along the resulting path using the
techniques described in the next section. (Note that the 4-neighbor version can be used as well, but in
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the resulting sequence of pixels the distance between any two consecutive pixels will be 1. As a result,
the computed perimeter will simply be the number of pixels remaining after subtracting the eroded
image from the original region, using Bg as the structuring element.) Secondly, to fill all the holes in a
region, call WALLFOLLOW to find the exterior boundary, then call FLOODFILL to fill the interior.

The path computed by the 4-neighbor version of WALLFOLLOW contains pixels that are 8-
neighbors of the background, while the path computed by the 8-neighbor version contains pixels that
are 4-neighbors of the background. While consecutive pixels in the former path are 4-neighbors, in
the latter path some of the consecutive pixels may be 4-neighbors while others are 8-neighbors. This
blending of 4- and 8-neighbors leads to something called m-adjacency:

e Two pixels p and ¢ in an image I are m-adjacent if I(p) = I(q) and ( g € Na(p) or (¢ € Np(p)
and Ni(p) Na(q) = 0)).

In other words, two pixels are m-adjacent if they are either 4-adjacent or they are 8-adjacent and
there does not exist another pixel which is 4-adjacent to both of them. It can be shown that 8-
neighbor WALLFOLLOW produces a path in which consecutive pixels are m-adjacent if we define the
test I(p) = I(q) to be false iff one pixel is on the path while the other is not.

2.6 Computing distance in a digital image

For many applications it is important to be able to compute the distance between two points in an
image, for example to measure the perimeter of a region or the length of an object. We now discuss
techniques for performing this task.

2.6.1 Distance functions

Let p = (xp, yp) and ¢ = (24, y4) be the coordinates of two pixels in an image. A function d(p, ¢) of two
vectors is a distance function (or metric) if it satisfies three properties:

e d(p,q) > 0and d(p,q) =0iff p=g¢ (non-negativity)
e d(p,q) = d(q,p) (symmetry)
e d(p,q) < d(p,7)+d(r,q), Vr (triangle inequality)

A function satisfying only the first two conditions is called a semi-metric, an example being the
quadratic function |[p—¢||* = (2, — 24)* + (yp — y4)?. (There is also something called an ultra-metric,
but we will not worry about that until Chapter 7.) Three common distance functions for pixels are the
Euclidean distance, which is the square root of the quadratic function, and two others:

dg(p,q) = \/(ﬂﬁp —24)? + (Yp — yg)? Euclidean
da(p,q) = |zp—zq| + |yp — yql Manhattan, or city-block
ds(p,q) = max{|z, — x4, |yp — Yq|} chessboard

The Manhattan distance is known as d, because the pixels that are one unit of distance away are the
4-neighbors of the pixel. The chessboard distance is known as dg because the pixels that are one unit
of distance away are the 8-neighbors of the pixel. Manhattan always overestimates Euclidean, while
chessboard always underestimates it: dg(p,q) < dg(p,q) < da(p,q). Moreover, chessboard is never more
than 30% away from the Euclidean value: 0.7dg(p, q) < ds(p,q) < dr(p,q). To see these relations, note
that for any two non-negative numbers a,b > 0,

1 1
E(a—l—b)Sﬁ\/aQ—l—bQSmax(a,b)gx/aQ—l—bQSa—&—b. (2.8)

The proof of these relations is straightforward and left as an exercise.
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Figure 2.13: A sampled 90-degree sector of a circle with radius 10. The true arc length is 10(7/2) = 15.7.
The estimated path length according to the three formulas is 16.5 (Freeman), 15.2 (Pythagorean),
and 15.7 (Kimura-Kikuchi-Yamasaki). Blue lines indicate isothetic moves, while orange lines indicate
diagonal moves.

2.6.2 Path length

Now suppose that we wish to calculate the length of a specific path ¢ between pixels p and ¢, which
as we saw earlier is defined as a sequence of pixels beginning with p and ending with ¢ such that each
successive pixel in the path is adjacent to the previous pixel. Let n; 4 be the number of isothetic moves
in the path, where an isothetic move is one which is horizontal or vertical (i.e., the two pixels are
4-neighbors of each other). Similarly, let nq 4 be the number of diagonal moves in the path (i.e., the
two pixels are D-neighbors of each other). Generally the path will use m-adjacency, but if 4-adjacency
is used then ngq 4 is simply zero.

Even in a continuous space the length of a path (or curve) is not always well-defined (consider
the well-known fractal question, “What is the length of the British coastline?”). In a discrete image it
is also impossible to precisely define or solve the problem, but nevertheless one reasonable approach is
to sum the Euclidean distances between consecutive pixels along the path. Since the Euclidean distance
between two pixels that are 4-neighbors of each other is 1, and the Euclidean distance between two
pixels that are D-neighbors of each other is v/2, this is equivalent to measuring the length of the path
¢ as

length(¢) = ni.4 + na.sV?2, (Freeman) (2.9)

which is known as the Freeman formula. An alternate approach is to rearrange the node pairs and use
the Pythagorean theorem to estimate the length of the curve as the hypotenuse of the resulting right
triangle:

length(¢) = \/nfw + (ni,¢ + nd,g)?. (Pythagorean) (2.10)

While the Freeman formula generally overestimates the length of a curve, the Pythagorean theorem
usually underestimates it.

Insight into the problem is obtained by noticing that the previous two equations can be written
as special cases of the more general formula:

length(¢) = \/n§,¢ + (na,p + cnig)? + (1 — c)ni g, (Kimura-Kikuchi-Yamasaki) (2.11)

where ¢ = 0 for the Freeman formula and ¢ = 1 for the Pythagorean theorem. By setting ¢ to %,
we achieve a compromise between overestimation and underestimation. This approach, known as the
Kimura-Kikuchi-Yamasaki method, tends to work well in practice. An example of the three measures

applied to a sampled continuous curve is shown in Figure 2.13.

2.6.3 Chamfering

We have seen how to compute the distance between two pixels, as well as the distance between two
pixels along a specific path. But what if we want to compute a large number of distances? Such a
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problem arises, for example, when performing template matching using intensity edges, in which we
need to compute distances between all the pixels in the image and a substantial subset (the intensity
edges) of the pixels. For reasons of computational efficiency, it is not feasible to directly compute all of
these distances directly. Instead, we will employ a computational trick that will enable us to efficiently
compute a good approximation.

Let us define the (a,b) chamfer distance between pixel p = (zp,y,) and pixel ¢ = (z4,y,) as
dap(p,q) = ming{an; 4 + bng s}, where a and b are nonnegative values, the number of isothetic and
diagonal moves in the path ¢ are given by n; ¢ and ng 4, respectively, and the minimum is computed
over all possible paths ¢ between the two pixels. We shall assume that 0 < a < b, in which case the (a, b)
chamfer distance d, ; is a metric. We shall also assume the Montanari condition, b < 2a, to ensure that
diagonal moves are not ignored. Rather than searching over all possible paths, simple observation reveals
that the shortest path always consists of a horizontal or vertical line segment, along with a diagonal
line segment if the two pixels do not share the same column or row. That is, if we define d, = |z, — z,|
and dy = |yp, — 4|, then the distance between p and ¢ is simply given by dq 5(p, ¢) = an; + bng, where
ng = min(dy, dy) is the number of moves along the diagonal line segment and n; = max(dg, dy) — ng is
the number of remaining isothetic moves. This single formula arises because the Montanari condition
favors diagonal moves. If, on the other hand, the Montanari condition does not hold, then diagonal
moves are ignored, in which case the distance is dq ,(p, ¢) = a(dz + dy), which is a scaled version of the
Manhattan distance.

The Euclidean distance is usually considered the “correct” distance, while other distance func-
tions are approximations to it, often referred to as quasi-Euclidean. It turns out that the (a,b) chamfer
distance that best approximates Euclidean is the one with a = 1 and b = % +vVvV2-1~1.351. A
nearby integer ratio is 4/3, so if there is a need to avoid floating point computations, then ds 4 yields
a reasonable approximation to the Euclidean distance (scaled by the factor 3). It is easy to see that if
a =1 and b = 0o, the chamfer distance reduces to the special case of Manhattan because it computes
the minimum number of isothetic moves between the pixels, or if ¢ = 1 and b = 1, then the chamfer
distance reduces to chessboard because it treats isothetic and diagonal moves equally. This relationship
between Euclidean and quasi-Euclidean helps shed light on why this procedure is called chamfering. In
woodworking, chamfering refers to the process of reducing the harsh 90-degree angles of a surface by
introducing a beveled edge. In a similar manner, the chamfer distance in an image approximates the
Euclidean distance by smoothing out the harsh corners of the Manhattan or chessboard distances by
allowing appropriately weighted diagonal moves.

The algorithm to compute the (a,b) chamfer distance is straightforward. It involves two passes
through the image, with the first pass scanning the image from left-to-right and top-to-bottom, then
the second pass scanning in the reverse direction. For each pixel, four of its 8-neighbors are examined
in one direction, then the other four in the reverse direction. One can think of the algorithm as casting
shadows from the foreground pixels in the two diagonal directions (southeast in the first pass, and
northwest in the second). After the first pass, the distances from every pixel to all of the pixels above
and to the left have been computed, and after the second pass, the distances to all of the pixels have
been computed.
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CHAMFER(I; a,b)

1 ; first pass

2 for y < 0 to height — 1 do

3 for z «— 0 to width — 1 do

4 if I(x,y) == ON then

5 O(z,y) <0

6 else

7 d(z,y) < MIN(co,a + 6(z — 1,y),a + d(z,y — 1), b+ d(x — L,y — 1), b+ d0(z+ 1,y — 1))
8 ; second pass

9 for y <« height — 1 to 0 step -1 do

10 for x «— width — 1 to 0 step -1 do

11 if I(x,y) # ON then

12 d(z,y) — MIN(d(z,y),a+d(x + 1,y),a+(x,y+ 1),b+d(x+ 1,y +1),b+d(x — 1,y + 1))

13 return §

In the code §(z,y) = oo if z or y is out of bounds, and co is meant to represent a large number that is
greater than any possible distance in the image. The chamfering algorithm is unique in that the manner
in which boundary pixels should be handled is specified precisely: Out of bounds pixels should simply
be ignored, so that the minimum is computed over less than five values when the pixel is along the
image border. Figure 2.14 shows an example of the chamfering algorithm applied to an image, while
Figure 2.15 illustrates one use of the chamfer distance.

For the special case of Manhattan distance (a = 1 and b = c0), the code simplifies to only require
examining two of the 4-neighbors in each pass:

CHAMFERMANHATTAN(])

1 ; first pass

2 for y — 0 to height — 1 do

3 for z < 0 to width — 1 do

4 if I(z,y) == ON then

5 §(z,y) <0

6 else

7 §(z,y) — MIN(o0, 1 4+ d(z — 1,y),1 + d(z,y — 1))
8 ; second pass

9 for y < height — 1 to 0 step -1 do

10 for x «— width — 1 to 0 step -1 do

11 if I(z,y) # ON then

12 d(z,y) — MIN(§(z,y), 1+ 0(z+ 1,y), 1 + d(z,y + 1))

13 return §

Since Manhattan always overestimates the Euclidean distance, while chessboard always under-
estimates the Euclidean distance, a combination of the two is sometimes used. One approach is to
alternate the computations between the two distance metrics as the image is scanned; this requires
two passes through the image, as usual. Another approach is to compute both d4 and dg and then to
combine the results: max{ds(p, q), %d4 (p,q)}, which requires four passes through the image. Of course,
as mentioned earlier, a good approximation can also be obtained by simply computing ds 4 and then
dividing by three.

2.7 Moments

Suppose we have a region in an image found by thresholding or some other algorithm. Let us define
the region by a non-negative mass density function f(x,y) > 0 defined over the image domain, where
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Figure 2.14: A binary image and its chamfer distance (brighter pixels indicate larger distances).

¥~ centroid
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Figure 2.15: For a region with concavities, its centroid may not even lie within the region. Therefore,
the location with maximum chamfer distance (computed on the inverted image, so that the distance to
the background is computed) is often a better estimate of the “center” of a region, because it provides
the center of the largest part of the region.

the function generally returns larger values inside the region than outside. We will focus our attention
on the simplest (and most common) case of a binary region in which f(x,y) = 1 inside the region and
f(x,y) = 0 outside the region, but the analysis of this section applies to any non-negative function. As
another possibility, f could be a grayscale image obtained by applying the binary mask of the region
to the original intensity image or the result of some probability map generation. Notice that we do not
require ), . f(z,y) = 1.

Properties of the region can be determined by computing its moments. Given the function f and
non-negative integers p and ¢, the pgth moment of a 2D region is defined as:

Mpg = > 2Py f(x,y). (2.12)

We say that the pgth moment is of order p + q. Thus, the zeroth-order moment is mgq, the first-order
moments are mig and mg1, and the second-order moments are msq, mg2, and my;. Computing these
moments is easy, requiring a single pass through the image:

COMPUTEMOMENTS( f)

1 mgo = mio < Mmo1 < Mag «— Moz < m11 < 0
2 for (z,y) € f do

3 moo < Mmoo + f(z,y)

4 myg < mio + T * f(z,y

5 mo1 < mo1 +y *x f(x,y
6 Moo < Moo + = * x x f(x,y)

7 Moz < Moz +y *y * f(x,y)

8 myp <— ma1 +xxy* f(z,y)

9 return moo, M10, Mo1, 120, 02, M11

The reader may recall the concept of moments from studying statics. The inertial properties of
a solid planar body with a mass density function f can be calculated from the moments of f. In a
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similar manner, the zeroth moment of an image region yields its area, the first order moments are used
to compute its center of mass, and the second order moments are related to its moments of inertia. We
define the centroid (Z,7) of a region as simply the weighted average of the pixels, which can be easily
computed from the moments:

_ 1
(@9 = W(fo(%y)a;;yf(%y)> (2.13)

z,y

(m“’ mm) . (2.14)

)
Moo 1Moo

Using our physical analogy, the centroid of the image region plays the same role as the center of mass
of the rigid body specified by f. In the case of a binary function f, a cardboard cutout with the
same shape as the region will remain (in the absence of external forces besides gravity) horizontal when
suspended by a string attached at the center of mass.

The moments are affected by the location of the region in the image. To make the moments
translation invariant, we define the pgth central moment as the pgth moment about the centroid:

Hpa =YD (& =2y —§)"f(2,y).

It is easy to show that the central moments are functions of the regular moments:

oo = Moo (2.15)
o = 0 (2.16)
por = 0 (2.17)
20 = Mag — TMig (2.18)
fo2 = Mo2 — Ymo1 (2.19)
M1l = My — Ymig = M1 — Tmoy. (2.20)

In other words, the central moments can be computed with just a single pass through the image:

CoMPUTECENTRALMOMENTS( f)

(moo, M10, Mo1, M20, Moz, M11) < COMPUTEMOMENTS( f)
Koo < ™Moo

T« mig/Mmoo

4« mo1/Mmoo

W20 <— Moo — T * Mg

o2 <= M2 — Y * Mo

H11 <= M1 — Y * Mo

return fig, (20, 025 H11

0O Ut Wi

There is no need to compute w1 or pg; because they are always zero, and in Line 7 we could equivalently
have used 11 < m11 — & * mo1.

Under a uniform scale change ' = ax,y’ = ay, a # 0, the central moments change according to
Hpq = aPtat2y, . This result is easily shown using the continuous formulation of moments:

[ -ar -y D ay
= [ [(ar - aapay - an) slo.patdrdy
= o [ [ ap - sy

— qPtat2

/
Hpq

Hpq
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since, by change of variables, da’ = adr and dy’ = ady. Now for the zeroth moment (p = ¢ = 0)
ptq+2
we have i, = apgo. Therefore, if we normalize a region’s central moment by dividing by py,> we

obtain a quantity that does not change with scale:

! p+q+2 p+q+2
Hipg _ ¢ Hpg & Hpqg Hpq (2.21)
, p+r21+2 - 9 p+g+2 - 9 p+g+2 - p+g+2 : .
(:“00) (a MOO) apPtat Hoo (MOO)

This leads to the definition of the pgth normalized central moment as
1
Npg = —%, (2.22)
oo
where v = Lg” for p4+ q > 2. The case p+ ¢ = 1 is not included simply because 19 = po1 = 0, as
shown earlier.

So far we have seen the central moments, which are invariant to translation; and the normalized
central moments, which are invariant to translation and uniform scaling. A natural extension are the
Hu moments, which are invariant to translation, rotation and uniform scale changes. These are given
by:
$1 = m20 + No2
$2 = (20— no2)® +4n7,
¢s = (M0 —3m2)> + (3021 — no3)”
¢s = (30 +m2)> + (21 + 103)°
¢5 = (30— 3m2)(ms0 + m2)[(mso + m2)® — 3(m21 + nos)*] + (3n21 — Mos) (M21 + n03) [3(m30 + M12)* — (N21 + M03)?]

(
(

ol 20 — 102)[(M30 + M2)* — (21 + N03)*] + 4711 (N30 + M12) (121 + No3)
old

The first six values are also invariant to reflection, while ¢7 changes sign upon reflection, allowing to
distinguish between mirror images.

Other invariants are the Legendre moments and the complex Zernike moments. While it is not
possible to make the Legendre moments rotation invariant, the complex Zernike moments are generally
superior to the Hu moments for rotation invariance.

2.8 Region Properties

Computing properties of an image region is important for classification, defect detection, and so forth.
As we shall see, most of the important properties can be computed using the moments.

2.8.1 Area

The area of a region is given by its zeroth moment mgg = pgg. For a binary region, this is simply the
number of pixels in the region. It may be worth noting that another way to estimate the area of a
region, given the pixels defining the boundary (as in wall follow), is to use

n—1

1

3 E (Tit1Yi — Tilit1), (2.23)
i=0

where subscripts are computed modulo n, and n is the number of pixels in the boundary. This expression
follows naturally from the definition of integration under the upperside of the curve subtracting the
integration under the underside of the curve. One nice property of this equation is that it also holds
for polygonal approximations of the region, by replacing the pixel coordinates with vertex coordinates
and replacing the number of pixels with the number of vertices.
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2.8.2 Orientation

Suppose we have a binary region containing pixels x; = [z; y; ]T , i =1,...,n, where vector notation
is here used to represent the coordinates, and T refers to the transpose operation that makes x; vertical.
To capture relationships between the pixels, we calculate the covariance matrix of the region, which is
defined as the mean of the outer products of the pixel coordinates after shifting the coordinate system

to the region centroid:?

c = % (x; — x)(x; —x)T (2.24)
_ % . B:ﬂ (25— % yi— 7] (2.25)
I @2 (@8- 9)

- a2 [m ~Dwi-9) (- 9)? } (2.26)
_ l Z?:l(xi - f)Q Z?:1(xi —z)(yi — )

T o [Z?_lm ~D-9) - 9)? ] (2.27)
_ i H20  H11

oo [Mu /ioz}' (2.28)

Thus the covariance matrix of a binary 2D region is a simple function of the central moments:

oo L {MO Nll] , (2.29)
Moo | M11  Ho2

In our physical analogy, the covariance matrix is the inertia moment tensor of the object and captures
the moments of inertia about various axes. The diagonal elements are known as the principal moments
of inertia, while the off-diagonal elements are the products of inertia. Just as the area captures the
object’s resistance to linear forces, these values capture the object’s resistance to rotational forces about
the axes. Note that this equation can be used to define a covariance matrix even for non-binary regions.

The orientation of the region is the angle of the major axis, where the major axis is defined as
the axis about which the moment of inertia is minimized. Think of a baseball bat, where the principal
axis is the axis of symmetry: It requires much less energy to rotate the bat about the axis of symmetry
than it does to swing the bat, for example. It turns out that the angle 6 of the major axis is given by
a rather simple expression of the second-order central moments:

2
tan 20 = (“”) . (2.30)
H20 — H02

It is very important in this equation not to divide the numerator by the denominator. In other words, the
angle § must not be calculated as one half of the inverse tangent of the righthand side after performing
ordinary division. The reason for this is that the inverse tangent function would in that case return an
angle 26 between —m /2 and 7/2, which would then cause 6 itself to be constrained to the range —m /4
to 7/4, which of course does not represent the full range of possible line orientations. The solution to
this problem is to treat the numerator and denominator as separate arguments to an inverse tangent
function that computes the angle in the appropriate quadrant based on the individual signs of the
numerator and denominator. Most programming languages have such a function, often called atan2.
The right side of the equation indicates the rise over the run, so that the y argument to such a function

1
n—1
technically required to yield an unbiased estimate of the underlying distribution from which the sample points (z;,y;) are
drawn. However, understanding this distinction is beyond the scope of this book. Thankfully, for any reasonably sized

data set (e.g., n > 100), the difference between the two definitions is negligible.

2Sometimes you will see the normalization of the covariance matrix to be instead of % Such a definition is
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is the numerator, while the z argument is the denominator. After calculating 26 in such a manner, the
desired angle 6 is simply one half of the result. If all of the moments are computed using a standard
image coordinate system with the positive x axis pointing right and the positive y axis pointing down,
then the angle 8 will be clockwise with respect to the positive x axis.

Another expression for the angle is given by

toz — Moo + v/ (120 — po2)? + 4u?; _ 211
2p1 fi20 — pto2 + /(1120 — p102)2 + 4u2, 7

which comes from applying the double angle formula: tan 26 = lziiﬁf 7-

While proving Equation (2.30) is left as an exercise for the reader, some insight into the problem
can be gained by examining the structure of the covariance matrix. Because C is real and symmetric,
its eigenvalues (A\; and \g) are real and its eigenvectors (e; and eq) are mutually orthogonal: ef'es = 0.
According to the definition of eigenvalues and eigenvectors, we have C'e; = \;e; for i = 1,2. Stacking
the eigenvectors into a matrix P = [e; ey ] and the eigenvalues into a diagonal matrix A = diag(A1, A2)
yields the equation CP = PA. Rearranging, we see that the covariance matrix has been factored into
the product of a diagonal matrix and two orthogonal matrices: C = PAPT, since PPT = I where I is
the identity matrix.

The eigenvalues of C' can be computed by solving the characteristic equation det(C' — AI) = 0,
leading to

tan 6 (2.31)

1
Miz2y = 2100 (ﬂ?o + proz & \/(Mzo — po2)? + 4#?1) ; (2.32)

where \; takes the plus sign and Ay takes the minus sign, so that \; > A5. It is easy to show that the
sum of the eigenvalues is the trace of the covariance matrix, Ay + Ay = tr(C) = (20 + 102)/ 00, and
the product of the eigenvalues is its determinant, A\; Ao = det(C) = (u20p02 — p31)/1éo- Note also that
the eigenvalues are invariant to rotation, and their ratio is invariant to scale.

Since P is an orthogonal matrix, the vectors e; form an orthonormal basis that spans the space.
The matrix P is essentially a rotation of the coordinate axes (with a possible flipping if the determinant
of P is —1). Thus P represents the axes of a coordinate system which, when the origin is placed at
the centroid of the region, are aligned with the region. Adopting the convention that the eigenvalues
are sorted in decreasing order, A\; > g, the two columns of P represent the major and minor axis
of the region, respectively. It can be shown (see the exercises) that the equation for the orientation
above yields exactly the same orientation as that from computing the eigenvectors. In other words,

e; = [cosd sinQ]T and, from the property of orthogonality, e; = [ —sin 6 COSL‘)]T.
One way of understanding the connection between the covariance matrix and the orientation of
the region is to define the transformation x’ = PT(x—x). It is easy to show that the mean % b x;=0

and the resulting covariance matrix + 3" | x/(x})” = A. Since the covariance matrix is diagonal, the
data are uncorrelated in the rotated coordinate system. Note that this idea of aligning coordinate axes
with the data using eigenvalues and eigenvectors is the first step of Principal Components Analysis

(PCA). We will see more uses for PCA in later chapters.

2.8.3 Best-fitting ellipse

One reason for computing the moments is to approximate a region by a low-order parameteric model.
This is a form of dimensionality reduction, where a small number of parameters are used to summarize
an arbitrarily complicated region. Perhaps the simplest way to do this is to fit an axis-aligned non-
isotropic 2D Gaussian to the region, setting the Gaussian mean as (Z, ), and the variances in the two
directions using the diagonal elements of C":

120/ oo (2.33)
= {102/ 100- (2.34)

2
T
2

Ty
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The level set of a 2D function G(z, y) is the set of points (x, y) such that G(z,y) = h for some constant
h, i.e., the set {(z,y) : G(z,y) = h}. Geometrically, the level set is the intersection of the function
with the horizontal z = h plane, and it can be thought of as a horizontal slice through the function, or
equivalently a contour. With an appropriately defined value for h, the level set of the Gaussian will be
an axis-aligned ellipse that defines an approximation to the region.

Since we know the orientation of the region, however, we can do even better by aligning the
Gaussian with the region. This is easy to do using the complete matrix C' to approximate the region
using an ellipse obtained by slicing through the Gaussian represented by C'. To see the precise connection
between C' and the ellipse, suppose that we have a binary region that is exactly defined as the set of
pixels inside an ellipse centered at the origin:

R = {(2,y) : ax® + 2bxy + cy® < 1} (2.35)

with ac > b? to ensure that the equation describes an ellipse. It can be shown that the second-order
central moments of the region are related to the coefficients of the ellipse in a simple way:

L {20 ,un] { ¢ —b]
C=— = 2.36
e i 1 I (2.36)

where 7 = 4det(C) and det(C) = (ugop02 — p31)/ 130 is the determinant of the covariance matrix. This
relationship is reinforced by noting that the covariance matrix must be positive semidefinite, leading to
det C' > 0, which leads to paopo2 > 12, which implies ac > b?, which is exactly the requirement for the
equation to be an ellipse.

There is also a simple relationship between the length of the ellipse axes and the eigenvalues of
the covariance matrix:

semi-major axis length = 2y/)\; (2.37)
semi-minor axis length = 24/Aqg, (2.38)

where the semi-axis length is defined as the distance from the ellipse center to the intersection of the
ellipse boundary with the major or minor axis, respectively. Since \; captures the variance along the
axis, v/A; is the standard deviation, so that these expressions show that the ellipse corresponds to the
level set that intersects the ellipse at +20; in each direction.

Equations (2.37) and (2.38) are easy to derive by considering without loss of generality the simple
case of an ellipse that is aligned with the coordinate axes (b = 0), so that az?+ cy? = 1 is the boundary

1 and it crosses the y axis at y = +,/1.

Therefore the distance from the ellipse center to the intersection of the ellipse boundary with the z

1. From (2.36), we know that a = % Noting that p;; = 0 since b = 0, we can

of the ellipse. Such an ellipse crosses the = axis at z = +

axis is given by
substitute the definition of 7 from above, and we can also calculate A\; = pag/poo from Equation (2.32).
Putting these together yields the desired result:

1 / /4 /4 /
semi-major axis length = \/7 = 1o _ NZ(;NOWJOO = H20 _ o [H20 24/ Aq. (2.39)
a Ho2 Moo o2 Hoo Koo

Similar reasoning leads to the corresponding result for the length of the semi-minor axis. Since the
eigenvalues and lengths are unaffected by rotation, the results hold even when b # 0.

Putting all of this together, we see that given any arbitrary binary region R, we can compute
its second-order central moments. We can then compute the orientation of the region either using
Equation (2.30) or by calculating the eigenvalues and eigenvectors of the covariance matrix, then com-
puting the angle of the eigenvector corresponding to the larger eigenvalue. The “best fitting ellipse”
of the region (defined as the ellipse with the same second-order moments as the region) is given by
az? + 2bzy + cy? = 1, where the coefficients are determined by Equation (2.36). This ellipse is the level
set of the non-isotropic Gaussian with standard deviations v/A; and /A, oriented at an angle of §, with
the level corresponding to +20; along the major and minor axes.
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Figure 2.16: Left: A circle is the most compact shape, with a compactness of 1. Middle: A shape whose
compactness is less than 1. Right: The eccentricity of the shape is computed as the eccentricity of the
best fitting ellipse.

2.8.4 Compactness

Compactness is a measure of how close the pixels in the shape are to the center of the shape. Since the
most compact shape is a circle, we define compactness as

47 (area)

compactness = (2.40)

(perimeter)2’
so that a circle has a compactness of 1, since the area of a circle is 72 and its perimeter is 277, where 7
is the radius. For all other shapes, their compactness according to this definition is less than 1 (between
0 and 1). The perimeter is typically computed by applying the Kimura-Kikuchi-Yamasaki distance to
the boundary found by wall following. Note, however, that no matter how the perimeter is computed,
discretization effects can cause the resulting compactness to be slightly greater than 1.

2.8.5 Eccentricity

The eccentricity of a region measures its elongatedness, that is, how far it is from being rotationally
symmetric around its centroid. Since the eigenvalues capture the variance in the two principal directions,
we define the eccentricity of a region as the difference between these variances, normalized by the larger
variance. Units cause us to take the square root:

AL — A2

M
which ranges from 0 (when the region is a circle) to 1 (when the region is a straight line). Substituting
Equation (2.32) yields the eccentricity in terms of the moments:

2 — 2 4442 2
eccentricity = \/ \/(/‘20 po2)? + 4pty == \/ p , (2.42)
f20 + o2 + v/ (p20 — po2)? + 4p?, (C)+p

where 3 = \/tr?(C) — 4det(C), and tr?(C) is the square of the trace of the covariance matrix.

There are several advantages to this definition of eccentricity. First, it matches the standard
definition of the eccentricity of an ellipse, which is the ratio of the distance between the ellipse foci to
the length of the major axis. Thus, the eccentricity of the region is equivalent to the eccentricity of
the best fitting ellipse. Secondly, due to the normalization by A1, it is invariant to scale, which is a
desirable property because it ties the eccentricity to the shape of the object without regard to its size
in the image. Figure 2.16 shows an example of compactness and eccentricity.

Other definitions could be imagined for eccentricity, such as one minus the square root of the
ratio of the two eigenvalues:

_ _ 2 4 2
1— / \/Mzo + Ho2 (Mzo po2)? + M;1 , (2.43)
2o + foz + v/ (2o — fo2)? + 4u
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which also ranges from 0 (when the region is a circle) to 1 (when the region is a straight line). The
primary drawback of this definition is that there is no straightforward relationship between a change in
the axis lengths and the corresponding change in the value of the eccentricity. For example, a doubling
of the ratio of the two axis lengths does not lead to a doubling of the eccentricity. This problem could
be solved by removing the leading “one minus”, but the resulting value would then decrease when the
region became more elongated, and vice versa. An even worse measure is the difference between the
two eigenvalues:

1
A=Ay = 7\/(/120 — po2)? + 4p3y, (2.44)
Hoo

which ranges from 0 (when the region is a circle) to co (when the region is a line). This definition
suffers from two problems: (1) a doubling of the difference between the two principal axes leads to
a quadrupling of the eccentricity, and (2) the eccentricity is dependent upon the scale of the region.
Another definition that has been proposed by several authors is

(p20 — po2)* + 4pa1
00

(2.45)

While this equation bears some resemblance to that proposed, it is fundamentally flawed because of the
mismatch of units in the numerator, where one moment is added to the square of another.
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