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1 Introduction

We are all familiar with Euclidean geometry and with the fact that it describes our three-
dimensional world so well. In Euclidean geometry, the sides of objects have lengths, inter-
secting lines determine angles between them, and two lines are said to be parallel if they
lie in the same plane and never meet. Moreover, these properties do not change when the
Euclidean transformations (translation and rotation) are applied. Since Euclidean geome-
try describes our world so well, it is at �rst tempting to think that it is the only type of
geometry. (Indeed, the word geometry means \measurement of the earth.") However, when
we consider the imaging process of a camera, it becomes clear that Euclidean geometry is
insu�cient: Lengths and angles are no longer preserved, and parallel lines may intersect.
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Euclidean geometry is actually a subset of what is known as projective geometry. In
fact, there are two geometries between them: similarity and a�ne. To see the relationships
between these di�erent geometries, consult Figure 1. Projective geometry models well the
imaging process of a camera because it allows a much larger class of transformations than
just translations and rotations, a class which includes perspective projections. Of course,
the drawback is that fewer measures are preserved | certainly not lengths, angles, or
parallelism. Projective transformations preserve type (that is, points remain points and
lines remain lines), incidence (that is, whether a point lies on a line), and a measure known
as the cross ratio, which will be described in section 2.4.

Projective geometry exists in any number of dimensions, just like Euclidean geometry.
For example the projective line, which we denote by P1, is analogous to a one-dimensional
Euclidean world; the projective plane, P2, corresponds to the Euclidean plane; and pro-
jective space, P3, is related to three-dimensional Euclidean space. The imaging process is
a projection from P3 to P2, from three-dimensional space to the two-dimensional image
plane. Because it is easier to grasp the major concepts in a lower-dimensional space, we
will spend the bulk of our e�ort, indeed all of section 2, studying P2, the projective plane.
That section presents many concepts which are useful in understanding the image plane and
which have analogous concepts in P3. The �nal section then brie
y discusses the relevance
of projective geometry to computer vision, including discussions of the image formation
equations and the Essential and Fundamental matrices.
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Euclidean similarity a�ne projective

Transformations

rotation X X X X
translation X X X X
uniform scaling X X X
nonuniform scaling X X
shear X X
perspective projection X
composition of projections X

Invariants

length X
angle X X
ratio of lengths X X
parallelism X X X
incidence X X X X
cross ratio X X X X

Figure 1: The four di�erent geometries, the transformations allowed in each, and the mea-
sures that remain invariant under those transformations.

The purpose of this monograph will be to provide a readable introduction to the �eld
of projective geometry and a handy reference for some of the more important equations.
The �rst-time reader may �nd some of the examples and derivations excessively detailed,
but this thoroughness should prove helpful for reading the more advanced texts, where the
details are often omitted. For further reading, I suggest the excellent book by Faugeras [2]
and appendix by Mundy and Zisserman [5].

2 The Projective Plane

2.1 Four models

There are four ways of thinking about the projective plane [3]. The most important of these
for our purposes is homogeneous coordinates, a concept which should be familiar to anyone
who has taken an introductory course in robotics or graphics. Starting with homogeneous
coordinates, and proceeding to each of the other three models, we will attempt to gain
intuition on the nature of the projective plane, whose concise de�nition will then emerge
from the fourth model.
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2.1.1 Homogeneous coordinates

Suppose we have a point (x; y) in the Euclidean plane. To represent this same point in
the projective plane, we simply add a third coordinate of 1 at the end: (x; y; 1).1 Overall
scaling is unimportant, so the point (x; y; 1) is the same as the point (�x; �y; �), for any
nonzero �. In other words,

(X; Y;W ) = (�X; �Y; �W )

for any � 6= 0 (Thus the point (0; 0; 0) is disallowed). Because scaling is unimportant,
the coordinates (X; Y;W ) are called the homogeneous coordinates of the point. In our
discussion, we will use capital letters to denote homogeneous coordinates of points, and
we will use the coordinate notation (X; Y;W ) interchangeably with the vector notation
[X; Y;W ]T .

To represent a line in the projective plane, we begin with a standard Euclidean formula
for a line

ax+ by + c = 0;

and use the fact that the equation is una�ected by scaling to arrive at the following:

aX + bY + cW = 0

uTp = pTu = 0; (1)

where u = [a; b; c]T is the line and p = [X; Y;W ]T is a point on the line. Thus we see that
points and lines have the same representation in the projective plane. The parameters of
a line are easily interpreted: �a=b is the slope, �c=a is the x-intercept, and �c=b is the
y-intercept.

To transform a point in the projective plane back into Euclidean coordinates, we sim-
ply divide by the third coordinate: (x; y) = (X=W; Y=W ). Immediately we see that the
projective plane contains more points than the Euclidean plane, that is, points whose third
coordinate is zero. These points are called ideal points, or points at in�nity. There is a sep-
arate ideal point associated with each direction in the plane; for example, the points (1; 0; 0)
and (0; 1; 0) are associated with the horizontal and vertical directions, respectively. Ideal
points are considered just like any other point in P2 and are given no special treatment.
All the ideal points lie on a line, called the ideal line, or the line at in�nity, which, once
again, is treated just the same as any other line. The ideal line is represented as (0; 0; 1).

Suppose we want to �nd the intersection of two lines. By elementary algebra, the
two lines u1 = (a1; b1; c1) and u2 = (a2; b2; c2) are found to intersect at the point p =
(b1c2 � b2c1; a2c1 � a1c2; a1b2 � a2b1). This formula is more easily remembered as the cross
product: p = u1 � u2. If the two lines are parallel, i.e., �a1=b1 = �a2=b2, the point of
intersection is simply (b1c2 � b2c1; a2c1 � a1c2; 0), which is the ideal point associated with
the direction whose slope is �a1=b1. Similarly, given two points p1 and p2, the equation of
the line passing through them is given by u = p1 � p2.

1In general, a point in an n-dimensional Euclidean space is represented as a point in an (n+1)-dimensional
projective space.
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point p = (X; Y;W )

incidence pTu = 0

collinearity jp1 p2 p3 j = 0

join of 2
points

u = p1 � p2

ideal points (X; Y; 0)

(a)

line u = (a; b; c)

incidence pTu = 0

concurrence ju1 u2 u3 j = 0

intersection
of 2 lines

p = u1 � u2

ideal line (0; 0; c)

(b)

Figure 2: Summary of homogeneous coordinates: (a) points, and (b) lines.

Now suppose we want to determine whether three points p1, p2, and p3 lie on the same
line. The line joining the �rst two points is p1 � p2. The third point then lies on the line
if pT3 (p1 � p2) = 0, or, more succinctly, if the determinant of the 3 � 3 matrix containing
the points is zero:

det [p1 p2 p3 ] = 0:

Similarly, three lines u1, u2, and u3 intersect at the same point (i.e., they are concurrent),
if the following equation holds:

det [u1 u2 u3 ] = 0:

The concepts of homogeneous coordinates are summarized in Figure 2. For further reading,
consult the notes by Guibas [3].

Example 1. Given two lines u1 = (4; 2; 2) and u2 = (6; 5; 1), the point of intersection is
given by:

������
i j k

4 2 2
6 5 1

������ = (2� 10)i+ (12� 4)j+ (20� 12)k = (�8; 8; 8) = (�1; 1; 1):

Example 2. Consider the intersection of the hyperbola xy = 1 with the horizontal
line y = 1. To convert these equations to homogeneous coordinates, recall that X = Wx
and Y = Wy, yielding XY = W 2 for the hyperbola and Y = W for the line. The
solution to these two equations is the point (W;W;W ), which is the same as the point
(1; 1) in the Euclidean plane, the desired result. Now let us consider the intersection of
the same hyperbola with the horizontal line y = 0, an intersection which does not exist in
the Euclidean plane. In homogeneous coordinates the line becomes Y = 0 which yields the
solution (X; 0; 0), the ideal point associated with the horizontal direction.

2.1.2 Ray space

We have just seen that, in going from Euclidean to projective, a point in R2 becomes a
set of points in R3 which are related to each other by means of a nonzero scaling factor.
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X

line
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u W

Figure 3: Ray space.

Therefore, a point p = (X; Y;W ) in P2 can be visualized as a \line" 2 in three-dimensional
space passing through the origin and the point p (Technically speaking, the line does not
include the origin). This three-dimensional space is known as the ray space (among other
names) and is shown in Figure 3. Similarly, a line u = (a; b; c) in P2 can be visualized as a
\plane" passing through the origin and perpendicular to u. The ideal line is the horizontal
W = 0 \plane", and the ideal points are \lines" in this \plane."

2.1.3 The unit sphere

Because the coordinates are una�ected by scalar multiplication, P2 is two-dimensional, even
though its points contain three coordinates. In fact, it is topologically equivalent to a sphere.
Each point p = (X; Y;W ), represented as a \line" in ray space, can be projected onto the
unit sphere to obtain the point 1p

X2+Y 2+W 2 (X; Y;W ) (Notice that the denominator is never

zero, since the point (0; 0; 0) is not allowed). Thus, points in the projective plane can be
visualized as points on the unit sphere, as shown in �gure 4 (Since each \line" in ray space
pierces the sphere twice, both these intersections represent the same point; that is, antipodal
points are identi�ed). Similarly, the \planes" that represent lines in ray space intersect the
unit sphere along great circles, so lines are visualized as great circles perpendicular to u.
The ideal line is the great circle around the horizontal midsection of the sphere, and the
ideal points lie on this circle.

2.1.4 Augmented a�ne plane

To complete our geometrical tour of P2, let us project the unit sphere onto the plane W = 1.
Each point (X; Y;W ) on the sphere is thus mapped to the point (X

W
; Y
W
; 1) which lies at

the intersection of the W = 1 plane with the \line" representing the point. Similarly, lines
are mapped to the intersection of the W = 1 plane with the \plane" representing the line.
Ideal points and the ideal line are projected, respectively, to points at in�nity and the line

2Since it can become confusing to read statements such as, \A point is represented as a `line,' " we will
always enclose in quotation marks the entities whose sole purpose is visualization in n+ 1 dimensions.
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Figure 4: The unit sphere.

p

point line

ideal lineideal point

affine
plane

u

W
Y

X

Figure 5: The a�ne plane plus the ideal line and ideal points.

at in�nity, as shown in �gure 5. Thus we have returned to a representation in which points
are points and lines are lines. A concise de�nition of the projective plane can now be given:

De�nition 1 The projective plane, P2, is the a�ne plane augmented by a single ideal line

and a set of ideal points, one for each direction, where the ideal line and ideal points are

not distinguishable from regular lines and points.

The a�ne plane contains the same points as the Euclidean plane. The only di�erence is
that the former also allows for nonuniform scaling and shear.

2.2 Duality

Looking once again at �gure 2, the similarities between points and lines are striking. Their
representations, for example, are identical, and the formula for the intersection of two lines
is the same as the formula for the connecting line between two points. These observations
are not the result of coincidence but are rather a result of the duality that exists between
points and lines in the projective plane. In other words, any theorem or statement that is
true for the projective plane can be reworded by substituting points for lines and lines for
points, and the resulting statement will be true as well.
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2.3 Pencil of lines

A set of concurrent lines in P2, that is, a set of lines passing through the same point, is a
one-dimensional projective space called a pencil of lines. That the space is one-dimensional
is the obvious result of applying the principle of duality: a set of concurrent lines is the
same as a set of collinear points. We will say no more about a pencil of lines other than to
mention that it exists and that it has several applications in computer vision.

2.4 The cross ratio

As mentioned before, projective geometry preserves neither distances nor ratios of distances.
However, the cross ratio, which is a ratio of ratios of distances, is preserved and is therefore
a useful concept. Given four collinear points p1, p2, p3, and p4 in P2, denote the Euclidean
distance between two points pi and pj as �ij . Then, one de�nition of the cross ratio is the
following:

Cr(p1;p2;p3;p4) =
�13�24

�14�23

: (2)

In other words, select one of the points, say p1, to be a reference point. Compute the ratio
of distances from that point to two other points, say p3 and p4. Then compute the ratio of
distances from the remaining point, in this case p2, to the same two points. The ratio of
these ratios is invariant under projective transformations.

The Euclidean distance between two points pi = [Xi; Yi;Wi]T and pj = [Xj ; Yj ;Wj]T is
computed from the 2D Euclidean points obtained by dividing by the third coordinate, as
mentioned in section 2.1.1:

�ij =

vuut Xi

Wi

�
Xj

Wj

!2

+

 
Yi
Wi

�
Yj
Wj

!2

:

Actually, the cross ratio is the same no matter which coordinate is used as the divisor (as
long as the same coordinate is used for all the points); thus, if all the points lie on the ideal
line (Wi = 0 for all i), then we can divide by Xi or Yi instead. For a set of collinear points,
we can always select a coordinate such that at least three of the points have nonzero entries
for that coordinate. If one of the points has a zero entry, simply cancel the terms containing
the point (because it lies at in�nity); for example, if the second point is the culprit (W2 = 0;
W1;W3;W4 6= 0), then �23 = �24 =1, which cancel each other:

Cr(p1;p2;p3;p4) =
�13

�14

:

Although the cross ratio is invariant once what the order of the points has been chosen,
its value is di�erent depending on that order. Four points can be chosen 4! = 24 ways, but
in fact only six distinct values are produced, which are related by the set

f�;
1

�
; 1� �;

1

1� �
;
� � 1

�
;

�

� � 1
g:
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(a) (b)

Figure 6: The cross ratio can be used with �ve noncollinear points.

As we hinted before, there are other measures of the cross ratio, all of which are also
invariant under projective transformations. Not surprisingly, duality leads to a cross ratio
for four concurrent lines by replacing the Euclidean distance between two points with the
sine of the angle between two lines (I have not con�rmed whether the cosine also works).
Another less obvious way to measure the cross ratio between four concurrent lines is to use
a new, arbitrary line that intersects them; the cross ratio of the lines is then de�ned as the
cross ratio of the four points of intersection (The cross ratio will be the same no matter
which line is used).

As a �nal comment on the cross ratio, it is worth noting that it does not require that the
original points be collinear. For example, given �ve points in a star con�guration, as shown
in �gure 6, we can connect the dots as shown in (a) to yield lines containing four collinear
points, the points of intersection, whose cross ratio can be used. Another possibility is to
draw lines from one of the points to the other four, as shown in (b), thus yielding four
concurrent lines whose cross ratio can be used.

2.5 Conics

In Euclidean geometry, the second-order conic sections (ellipses, parabolas, and hyperbolas)
are important phenomena, beyond the �rst-order curves such as lines and planes. Ellipses,
parabolas, and hyperbolas lose their distinction in projective geometry because they are all
projectively equivalent, that is, any form can be projected into any other form. Collectively,
these curves are referred to as conics, with no distinction between the di�erent forms.

Just as a circle in Euclidean geometry is de�ned as a locus of points with a constant
distance from the center, so a conic in projective geometry is de�ned as a locus of points
with a constant cross ratio to four �xed points, no three of which are collinear. Note that
in both cases the shape of the curve is de�ned with respect to an invariant of the particular
geometry, distance in the case of Euclidean, and cross ratio in the case of projective.

The equation of a conic is given by:

pTCp = 0;

or
c11X

2 + c22Y
2 + c33W

2 + 2c12XY + 2c13XW + 2c23YW = 0;
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where p is a 3� 1 vector and C is a symmetric 3� 3 matrix.
Since points and lines are dual concepts, it is not surprising that a conic is a self-dual

�gure. That is, it can be considered as a locus of points (as we have just done), or it can be
considered as an envelope of tangent lines (the set of lines that are tangent to the conic).
The equation for the envelope of lines is uT jCjC�1u.

2.6 Absolute points

A surprising property of conics is that every circle intersects the ideal line, W = 0, at two
�xed points. To see this, note that a circle is a conic with all o�-diagonal elements (c12,
c13, and c23) set to zero and all diagonal elements equal:

X2 + Y 2 +W 2 = 0;

which therefore intersects the ideal line W = 0 at

X2 + Y 2 = 0:

This equation has two complex roots, known as the absolute points : i = (1; i; 0) and j =
(1;�i; 0). (Although we have, for simplicity, assumed that homogeneous coordinates are
real, they can in general be the elements of any commutative �eld in which 1 + 1 6= 0 [1,
p. 112].) It will be shown in the next two subsections that the absolute points remain
invariant under similarity transformations, which makes them useful for determining the
angle between two lines.

2.7 Collineations

A collineation of P2 is de�ned as a mapping from the plane to itself such that the collinearity
of any set of points is preserved. Such a mapping can be achieved with matrix multiplication
by a 3� 3 matrix T . Each point p is transformed into a point p0:

p0 = Tp:

We will use the terms transformation and collineation interchangeably. Since scaling is
unimportant, only eight elements of T are independent. Therefore, since each point contains
two independent values, four pairs of corresponding points are necessary to determine T .

To transform a line u into a line u0, we note that collinearity must be preserved, that is,
if a point p lies on the line u, then the corresponding point p0 must lie on the corresponding
line u0. Therefore,

pTu = 0 = (T�1p0)Tu = (p0)T (T�Tu);

which indicates that
u0 = T�Tu:

From these results, it is not hard to show that a point conic C transforms to T�TCT�1,
and a line conic jCjC�1 transforms to T jCjC�1TT .
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Regarding transformations, recall that projective � a�ne � similarity � Euclidean.
Let's study the matrix T to uncover the relationships between these various geometries.
First we will write out the elements of T , for reference:

Tprojective =

2
4 t11 t12 t13
t21 t22 t23
t31 t32 t33

3
5 :

The a�ne plane is just the projective plane minus the ideal line. Therefore, a�ne
transformations must preserve the ideal line and the ideal points, that is, any point [X; Y; 0]T

must be transformed into [�X; �Y; 0]T for some arbitrary scaling �:

�

2
4XY
0

3
5 = T

2
4XY
0

3
5 ;

which implies that t31 = t32 = 0. The matrix for a�ne transformation, then, is

Taffine =

2
4 t11 t12 t13
t21 t22 t23
0 0 t33

3
5 ;

where once again only six of these parameters are independent, since scale is unimportant.
Unlike a�ne transformations, similarity transformations preserve angles and ratios of

lengths. Delaying the derivation for a moment, we simply state the result:

Tsimilarity =

2
4 cos � sin � t13
� sin � cos � t23

0 0 t33

3
5 ; (3)

where � is an arbitrary angle.
Under Euclidean transformation, scale is important, and therefore the point p must �rst

be converted to Euclidean coordinates by dividing by its third element. The transformation
then is �

x0

y0

�
=

�
cos � sin �
� sin � cos �

� �
x
y

�
+

�
tx
ty

�
:

In closing this section, we o�er one �nal proposition, along with its proof:

Proposition 1 A transformation is a similarity transformation if and only if it preserves

the absolute points, [1;�i; 0].

The \only if" is rather easy to see: The absolute point [1;�i; 0]T is transformed through
equation (3) to the point e�i� [1;�i; 0]T , which is equivalent because the scale factor is
ignored.
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The \if" is a little more complicated, but still rather straightforward. Starting with the
unrestricted equation for T,

T =

2
4 t11 t12 t13
t21 t22 t23
t31 t32 t33

3
5 ;

the fact that [1; i; 0]T is preserved yields the following two equations:

t11 + it12
t21 + it22

=
1

i

t31 + it32 = 0:

Since the elements of T are constrained to be real, this leads to the following three con-
straints on the elements of T :

t11 = t22

t12 = �t21

t31 = t32 = 0:

So the matrix of T looks like this:

T =

2
4 t11 t12 t13
�t12 t11 t23
0 0 t33

3
5 :

Given two arbitrary numbers t11 and t12, we can always reparameterize them as t11 = k cos �
and t12 = k sin �, where � is an angle and k is a scalar. Multiplying the previous equation
by 1=k (which is legal because we are working in homogeneous coordinates), we then get

T =

2
4 cos � sin � t13=k
� sin � cos � t23=k

0 0 t33=k

3
5 ;

which is seen to be the equation of a similarity transformation when compared with equation
(3). (note: Using the point [1;�i; 0]T yields the same result.)

2.8 Laguerre formula

Absolute points have a surprising but important application: they can be used to determine
the angle between two lines. To see how this works, let us assume that we have two lines
u1 and u2 which intersect the ideal line at two points, say p1 and p2. Then, the cross ratio
between these two points and the two absolute points i and j yields the directed angle �
from the second line to the �rst:

� =
1

2i
logCr(p1;p2; i; j);
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which is known as the Laguerre formula.
To gain some intuition on why this formula is true, let us consider a simple example.

Suppose we have two lines

a1x� y = 0

a2x� y = 0

in the a�ne plane. It is clear that these two lines can be represented as two vectors
v1 = [1; a1]T and v2 = [1; a2]T in the Euclidean plane. The directed angle between the two
lines is the directed angle between the two vectors and is given by:

tan � =
v2 � v1

v1 � v2
=

a1 � a2
1 + a1a2

:

Now in the projective plane these lines are represented as [a1;�1; 0]
T and [a2;�1; 0]

T ,
which are found by mapping points [x; y]T in the a�ne plane to points [x; y; 1]T in the
projective plane. The ideal line passing through i = [1; i; 0]T and j = [1;�i; 0]T is given by
i� j = [0; 0; 1]T. The two points of intersection between this line and the two original lines
are given by [1; a1; 0]T and [1; a2; 0]T . The cross ratio of the four points is then given by:

Cr(p1;p2; i; j) =
a1 � i

a1 + i
�
a2 + i

a2 � i

=
1 + a1a2 + i(a1 � a2)

1 + a1a2 + i(a2 � a1)
:

Converting the complex numbers from rectangular to polar coordinates yields:

=
e
i tan�1

(a1�a2)
1+a1a2

e
i tan�1

(a2�a1)
1+a1a2

= e
2i tan�1

(a1�a2)
1+a1a2 ;

from which it follows that

1

2i
logCr(p1;p2; i; j) = tan�1

a1 � a2
1 + a1a2

= tan�1
v2 � v1

v1 � v2
;

which is the desired result.

3 Projective Space

All of the concepts that we have discussed for the projective plane, P2, have analogies
in projective space, P3. For example, there is a duality between points and planes, lines
are self-dual, a pencil of planes is a two-dimensional projective space,3 the cross ratio

3Do not be confused by the term space, which can refer to either three dimensions or an arbitrary number
of dimensions.
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between planes is invariant, quadrics play the same role as conics, the absolute conic remains
invariant under similarity transformations, and the Laguerre formula can be used to �nd
the angle between two projection rays. For more details, see [2].

A point in P3 is represented by a 4-tuple p = (X; Y; Z;W ), and similarly for a plane
n. Not surprisingly, a point lies in a plane if and only if pTn = 0. Slightly more di�cult
are the tasks of �nding the plane which passes through three given points or of �nding the
intersections of planes. To answer these questions, we must �rst de�ne a representation for
lines.

3.1 Representing lines: The Pl�ucker relations

Recall from the Section 2 that the coordinates of the line passing through two points p1 =
(X1; Y1;W1) and p2 = (X2; Y2;W2) is given by

u = (Y1W2 �W1Y2;W1X2 �X1W2; X1Y2 � Y1X2):

Notice that these three coordinates are just the determinants of the three 2�2 submatrices
of the following matrix:

[p1 p2 ] =

2
4X1 X2

Y1 Y2
W1 W2

3
5 ;

taken in the appropriate order and given the appropriate sign.
The procedure is similar in P3. The coordinates of the line u passing through two points

p1 = (X1; Y1; Z1;W1) and p2 = (X2; Y2; Z2;W2) is given by the determinants of the six 3�3
submatrices of the following matrix:

[p1 p2 ] =

2
664
X1 X2

Y1 Y2
Z1 Z2

W1 W2

3
775 :

In other words, u = (l41; l42; l43; l23; l31; l12), where

l41 = W1X2 �X1W2

l42 = W1Y2 � Y1W2

l43 = W1Z2 � Z1W2

l23 = Y1Z2 � Z1Y2

l31 = Z1X2 �X1Z2

l12 = X1Y2 � Y1X2:

These coordinates lij are called the Pl�ucker coordinates of the line. It is fairly easy to show
that, if the points p1 and p2 are not ideal (that is, W1 and W2 are not zero), then the
coordinates have a nice Euclidean interpretation:

(l41; l42; l43) = �p2 � �p1

(l23; l31; l12) = �p1 � �p2;
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where �pi =
1

Wi
(Xi; Yi; Zi), i = 1; 2, are the coordinates of the corresponding Euclidean

points. That is, the �rst three Pl�ucker coordinates describe the direction of the line, and
the last three coordinates describe the plane containing the line and the origin and the
distance from the origin to the line. Therefore the six Pl�ucker coordinates are su�cient
to describe the line. The coordinates are not independent, however, because they always
satisfy

l41l23 + l42l31 + l43l12 = 0;

which can be derived by noting that the 4�4 determinant jp1;p2;p1;p2j is identically zero.
Where does the magic number six come from? That is, why do we need six parameters

to represent a line in P3? Interestingly, it turns out that it takes (n+1k ) parameters to
represent an entity de�ned by k points in a space requiring n+1 parameters for each point
(To see this, count the number of submatrices in the matrix above). For example, in P2 a
point requires (31) = 3 parameters, and a line (which is de�ned by two points) also requires
(32) = 3 parameters. In P3, a point requires (41) = 4 parameters, a line (42) = 6 parameters,
and a plane (43) = 4 parameters.

3.2 Intersections and unions of points, lines, and planes

Now that we have a representation for lines, we can proceed to more complex relations. It
should not surprise the reader that the coordinates of the plane passing through the three
points pi = (Xi; Yi; Zi;Wi), i = 1; 2; 3, is obtained from the determinants of the four 3 � 3
submatrices of 2

664
X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

W1 W2 W3

3
775 :

Paying careful attention to the order of the submatrices then yields the plane's coordinates:

n = (

������
Y1 Y2 Y3
W1 W2 W3

Z1 Z2 Z3

������ ;
������
X1 X2 X3

Z1 Z2 Z3

W1 W2 W3

������ ;
������
X1 X2 X3

W1 W2 W3

Y1 Y2 Y3

������ ;
������
X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

������):
Note that, as a result of duality, the same formula can be used to �nd the point de�ning
the intersection of three planes.

A point p = (X; Y; Z;W ) lies on a line u = (l41; l42; l43; l23; l31; l12) if and only if the
vectors p1, p2, and p are collinear, that is, the determinants of the four 3� 3 submatrices
of the following matrix 2

664
X1 X2 X
Y1 Y2 Y

Z1 Z2 Z
W1 W2 W

3
775

are zero. In terms of the Pl�ucker coordinates, this concurrence can be expressed as follows:

Ap = 0;
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where

A =

2
664

l23 l31 l12 0
0 �l43 l42 l23

�l43 0 l41 �l31
�l42 l41 0 l12

3
775 :

An intuitive way to think about A is to realize that a line can be de�ned as the intersection
of two planes. Therefore, a point lies on the line if it lies in the two planes. The equation
above says that a point lies on the line if it lies in four planes. Only two of A's rows are
important for any given line (indeed, A is of rank two), but all four rows are necessary to
ensure that degenerate cases are handled properly.

Two lines u and u0 intersect if and only if their Pl�ucker coordinates satisfy the equation

(l41l
0
23 + l041l23) + (l42l

0
31 + l042l31) + (l43l

0
12 + l043l12) = 0;

which arises from the fact that the 4� 4 determinant jp1 p2 p01 p02 j is zero, where p1
and p2 lie on u and p01 and p

0
2 lie on u

0.
In this section we have shown how to �nd the line containing two points and the plane

containing three points. Symmetrically, we have shown how to �nd the point at the inter-
section of three planes but have not shown how to �nd the line at the intersection of two
planes. This latter problem can be solved by computing the determinants of the submatri-
ces, but it appears according to my calculations that a di�erent choice of submatrices will
have to be made. We have shown how to determine whether a point lies on a line or in a
plane, and we have shown whether two lines intersect, though we have not calculated their
intersection point. Other remaining problems include �nding the intersection of a line and
a plane, calculating the plane de�ned by two lines, and computing the plane de�ned by a
point and a line.

4 Projective Geometry Applied to Computer Vision

Projective geometry is a mathematical framework in which to view computer vision in gen-
eral, and especially image formation in particular. The main areas of application are those in
which image formation and/or invariant descriptions between images are important, such
as camera calibration, stereo, object recognition, scene reconstruction, mosaicing, image
synthesis, and the analysis of shadows. This latter application arises from the fact that the
composition of two perspective projections is not necessarily a perspective projection but
is de�nitely a projective transformation; that is, projective transformations form a group,
whereas perspective projections do not. Many areas of computer vision have little to do
with projective geometry, such as texture analysis, color segmentation, and edge detection.
And even in a �eld such as motion analysis, projective geometry o�ers little help when the
rigidity assumption is lost because the relationship between projection rays in successive
images cannot be described by such simple and elegant mathematics.
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The following three sections contain the image formation equations, detailed derivations
of the Essential and Fundamental matrices, and an interesting discussion of the interpreta-
tion of vanishing points.

4.1 Image formation

Image formation involves the projection of points in P3 (the world) to points in P2 (the
image plane). The perspective projection equations with which we are familiar,

x = �f
X

Z

y = �f
Y

Z

where the point (X; Y; Z) in the world is projected to the point (x; y) on the image plane,
are inherently nonlinear. Converting to homogeneous coordinates, however, makes them
linear:

p0 = Tperspectivep;

where p0 = [x; y; w]T , p = [X; Y; Z;W ]T, and the perspective projection matrix T is given
by:

Tperspective =

2
4�f 0 0 0

0 �f 0 0
0 0 1 0

3
5 :

The entire image formation process includes perspective projection, along with matrices
for internal and external calibration:

~P = TinternalTperspectiveTexternal =

2
4ku kc u0
0 kv v0
0 0 1

3
5
2
4�f 0 0

0 �f 0
0 0 1

3
5 [R t ]

=

2
4�u ��u cot � u0
0 �v= sin � v0
0 0 1

3
5 [R t ]

= AD; (4)

where �u and �v are the scale factors of the image plane (in units of the focal length f), �
is the skew (� = �=2 for most real cameras), the point (u0; v0) is the principal point, R is
the 3� 3 rotation matrix, and t is the 3� 1 translation vector. The matrix A contains the
internal parameters and perspective projection, while D contains the external parameters.

It is sometimes convenient to decompose the 3 � 4 projection matrix ~P into a 3 � 3
matrix P and a 3� 1 vector p

~P = [P p ]

so that
P = AR and p = At: (5)
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4.2 Essential and fundamental matrices

Suppose we have a stereo pair of cameras viewing a pointM in the world which projects onto
the two image planes at �m1 and �m2 (Since we are dealing with homogeneous coordinates,
M is 4 � 1, and �m1 and �m2 are each 3 � 1). If we assume the cameras are calibrated,
then �m1 and �m2 are given in normalized coordinates, that is, each is given with respect
to its camera's coordinate frame. The epipolar constraint says that the vector from the
�rst camera's optical center to the �rst imaged point, the vector from the second optical
center to the second imaged point, and the vector from one optical center to the other are
all coplanar. In normalized coordinates, this constraint can be expressed simply as

�mT
2 (t� R �m1) = 0;

where R and t capture the rotation and translation between the two cameras' coordinate
frames. The multiplication by R is necessary to transform �m1 into the second camera's
coordinate frame. By de�ning [t]x as the matrix such that [t]xy = t� y for any vector y,4

we can rewrite the equation as a linear equation:

�mT
2 ([t]xR �m1) = �mT

2E �m1 = 0;

where E = [t]xR is called the Essential matrix and has been studied extensively over the
last two decades.

Now suppose the cameras are uncalibrated. Then the matrices A1 and A2 (from (4))
containing the internal parameters of the two cameras are needed to transform the normal-
ized coordinates into pixel coordinates:

m1 = A1 �m1

m2 = A2 �m2:

This yields the following equation:

(A�1
2
m2)

T (t�RA�1
1
m1) = 0

mT
2A

�T
2

(t�RA�1
1
m1) = 0 (6)

mT
2 Fm1 = 0; (7)

where F = A�T
2

EA�1
1

is the more recently discovered Fundamental matrix.
Thus both the Essential and Fundamental matrices completely describe the geometric

relationship between corresponding points of a stereo pair of cameras. The only di�erence
between the two is that the former deals with calibrated cameras, while the latter deals with
uncalibrated cameras. The Essential matrix contains �ve parameters (three for rotation and
two for the direction of translation | the magnitude of translation cannot be recovered due

4If t =

"
a

b

c

#
, then [t]x =

"
0 �c b

c 0 �a

�b a 0

#
.
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to the depth/speed ambiguity) and has two constraints: (1) its determinant is zero, and
(2) its two non-zero singular values are equal. The Fundamental matrix contains seven
parameters (two for each of the epipoles and three for the homography between the two
pencils of epipolar lines) and its rank is always two [4].

There are several other ways to derive the Essential and Fundamental Matrices, each of
which presents a little more insight into their nature. In the next few subsections, we will
look at these methods and then summarize our �ndings.

4.2.1 Alternate derivation: algebraic

To describe the relationship between R, t, A1, and A2 more exactly, and to connect the
above equations with those found in [6], we o�er the following algebraic derivation.

Recall that a point M produces an image m through the equation m = ~PM. Without
loss of generality, we can assume thatM is given with respect to the �rst camera's coordinate
frame to yield the following two imaging equations:

�1m1 = A1 [ I 0 ]M

�2m2 = A2 [R t ]M;

where �1 and �2 are scale factors, I is the 3 � 3 identity matrix and 0 is the 3 � 1 null
vector. By letting M = [M̂T 1 ]T (M̂ is 3� 1), we achieve the following relation:

�2m2 = A2 [R t ]M

= A2(RM̂+ t)

= �1A2RA
�1
1 m1 +A2t (8)

�2A
�1
2 m2 = �1RA

�1
1 m1 + t: (9)

Geometrically, this equation says that the vector on the left is a linear combination of the
two vectors on the right. Therefore, they are all coplanar, and the vector v = t�RA�11 m1

is perpendicular to that plane:

�2(A
�1
2
m2)

Tv = �1(RA
�1
1
m1)

Tv+ tTv

= 0

mT
2 (A

�T
2 (t �R)A�11 )m1 = 0;

which is identical to (6).
Similarly, the vector w = A2t�A2RA

�1
1
m1 is perpendicular to the vectors in (8):

�2m
T
2w = �1(A2RA

�1
1
m1)

Tw + (A2t)
Tw

= 0

mT
2 (A2t� A2RA

�1
1 )m1 = 0:

This is a surprising result because it gives us a new and equivalent expression for F :

F = [A2t]xA2RA
�1
1 ; (10)
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which shows that F can be written as the product of an anti-symmetric matrix [A2t]x and
an invertible matrix A2RA

�1
1 [4].

4.2.2 Alternate derivation: from the epipolar line

Faugeras [2] approaches the problem from a slightly di�erent direction by using the fact
that the point m2 must lie on the epipolar line corresponding to m1:

mT
2 l = 0: (11)

That line contains two points, the epipole e (the projection of the �rst camera's optical
center into the second camera) and the point at in�nity associated with m1:

l = e�m1:

In [2, pp. 40-41] it is shown that the epipole is given by

e = ~P2

�
C

1

�
= ~P2

�
�P�1

1
p1

1

�
;

and the point at in�nity by
m1 = P2P

�1
1 m1:

Therefore, the epipolar line is:

l = e�m1
= ~P2

�
�P�11 p1

1

�
� P2P

�1
1 m1

= [A2R A2t ]

�
0
1

�
� (A2R)A

�1
1
m1

= A2t �A2RA
�1
1

= A2t � (A2RA
�1
1 )m1;

where we have used the substitutions in (5). Combining with (11), we get the desired result:

F = [A2t]xA2RA
�1
1 :

4.2.3 Summary

For reference, we now summarize the equation for the Essential matrix and the two equations
for the Fundamental matrix:

E = [t]xR

F = A�T2 EA�11
= [A2t]xA2RA

�1
1 :
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4.3 Vanishing points

Anyone who has taken a course in perspective drawing is familiar with the notion that lines
on the paper which represent parallel lines in the world intersect on the paper at a point
known as the vanishing point. Each set of lines has a di�erent vanishing point. But, just
what is a vanishing point? Projective geometry sheds light on this issue.

Because image formation is the projection from a 3D world to a 2D surface, each point
on the image plane is the projection of an in�nite number of points in the world. Usually,
the closest point is opaque and therefore we think of the point on the image plane as being
the projection of only one point in the world. However, ideal points in the world (i.e., ideal
points in P3), always project onto the image plane regardless of the opacity of other points.
Each point on the image plane is the projection of an ideal point. To see this, consider the
following perspective projection equation (a general projective transformation is used for
simplicity) from an ideal point [X; Y; Z; 0]T in the world to a point [x; y; w]T in the image
plane: 2

4 xy
w

3
5 =

2
4 t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34

3
5
2
664
X
Y

Z
0

3
775 :

Because the matrix is full rank, each ideal point projects to a di�erent point on the image
plane. Since parallel lines in 3D space intersect at an ideal point in P3, their projections
in the image plane must still intersect at a point. But now, through the projection matrix,
the ideal point has become a \real" point, in the sense that it is no longer ideal. However,
some ideal points do not become \real" points. If the ideal point represents a direction that
is parallel to the image plane, then the dot product of the ideal point with the third row of
the matrix (which is the z axis of the plane) is zero, and the projected point is still ideal.
Just as the ideal points of P2 have a one-to-one correspondence with all the points in P1,
so the ideal points of P3 have a one-to-one correspondence with all the points in P2. Thus,
we see that the fact that parallel lines in the world intersect when drawn on a piece of paper
follows naturally from projective geometry.

A Demonstration of Cross Ratio in P1

Let pi = (Xi; 1); i = 1; : : : ; 4 be four points on the projective line. (In this demonstration,
we will only consider �nite points, although the cross ratio holds for in�nite points as well.)
De�ne the distance �ij between two points i and j as �ij = jXi �Xj j. What we want to
show is that the cross ratio

Cr(p1;p2;p3;p4) =
�13�24

�14�23

is preserved under projective projection of the points.
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A point pi is projected through a 2 � 2 transformation matrix T to a new point p0i =
(t11Xi + t12; t21Xi + t22). Therefore, the new coordinate p0i = (X 0

i; 1) is de�ned by:

X 0
i =

t11Xi + t12
t21Xi + t22

:

Then, the distance between two points X 0
i and X 0

j is

�0ij = jX 0
i �X 0

j j

=

����� t11Xi + t12
t21Xi + t22

�
t11Xj + t12
t21Xj + t22

�����
=

����� det(T )(Xi �Xj)

(t21Xi + t22)(t21Xj + t22)

����� ;
where det(T ) = t11t22 � t12t21. The ratio between two distances, one from a point X 0

i to
another point X 0

j , and another from the same point X 0
i to a third point X 0

k, is

�0ij
�0ik

=
jX 0

i �X 0
j j

jX 0
i �X 0

kj

=

����� det(T )(Xi �Xj)

(t21Xi + t22)(t21Xj + t22)
�
(t21Xi + t22)(t21Xk + t22)

det(T )(Xi �Xk)

�����
=

�����Xi �Xj

Xi �Xk

�
t21Xk + t22
t21Xj + t22

����� ;
which is the original ratio �ij=�ik, multiplied by a constant that is dependent only upon
the coordinates Xj and Xk. A similar ratio �lj=�lk, taken with respect to another point
Xl, has this same constant, and therefore dividing the two ratios causes the constants to
cancel:

Cr(p1;p2;p3;p4) =
�013�

0
24

�014�
0
23

=

����X1 �X3

X1 �X4

�
t21X4 + t22
t21X3 + t22

�
X2 �X4

X2 �X3

�
t21X3 + t22
t21X4 + t22

����
=

����X1 �X3

X1 �X4

�
X2 �X4

X2 �X3

�

����
=

�13�24

�14�23

;

showing that the cross ratio is una�ected by projection.
Suppose that one of the points, say p1, is at in�nity (i.e., its second coordinate is zero).

Then, dividing by the second coordinate (which is what we normally do to transform the
point into the required form) yields X1 =1. Substituting into the above formula yields:

Cr(p1;p2;p3;p4) =
�24

�23

;
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since the terms with 1 cancel each other. (Technically speaking, we must take the limit of
the equation as X1 tends to 1, but the result is the same.) Similarly, if any of the other
points are at in�nity, we simply cancel the terms containing the point, and the result is the
cross ratio. Remember that at most one point may be at in�nity, because the points must
be distinct, and there is only one point at in�nity on the projective line.
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