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Microphone Array Position Calibration by
Basis-Point Classical Multidimensional Scaling

Stanley T. Birchfield, Member, IEEE, and Amarnag Subramanya

Abstract—Classical multidimensional scaling (MDS) is a global,
noniterative technique for finding coordinates of points given their
interpoint distances. We describe the algorithm and show how it
yields a simple, inexpensive method for calibrating an array of mi-
crophones with a tape measure (or similar measuring device). We
present an extension to the basic algorithm, called basis-point clas-
sical MDS (BCMDS), which handles the case when many of the dis-
tances are unavailable, thus yielding a technique that is practical
for microphone arrays with a large number of microphones. We
also show that BCMDS, when combined with a calibration target
consisting of four synchronized sound sources, can be used for au-
tomatic calibration via time-delay estimation. We evaluate the ac-
curacy of both classical MDS and BCMDS, investigating the sen-
sitivity of the algorithms to noise and to the design parameters to
yield insight as to the choice of those parameters. Our results vali-
date the practical applicability of the algorithms, showing that er-
rors on the order of 10–20 mm can be achieved in real scenarios.

Index Terms—Calibration, Euclidean coordinates, localization,
microphones.

I. INTRODUCTION

APPLICATIONS using microphone arrays, such as deter-
mining the location of the current speaker (acoustic local-

ization) or improving a speaker’s sound quality by combining
the microphone signals (beamforming), require the locations
of the microphones to be known. For such applications, unless
one is able to place the microphones at known locations during
setup, one must calibrate their locations after they have been
placed in the environment. This problem, known as geometric
microphone array calibration, has traditionally been solved by
nonlinear optimization techniques that require initial estimates
and are subject to local minima.

Multidimensional scaling (MDS) is a field of study concerned
with embedding a set of points in a low-dimensional space so
that the distances between the points resemble as closely as pos-
sible a given set of dissimilarities between objects that they rep-
resent. These dissimilarities may be measured in a variety of
ways, e.g., the difference between colors as perceived by human
subjects. For decades, MDS has been a popular technique for
analyzing experimental data in the physical, biological, and be-
havioral sciences [3], [7].

In metric MDS, the dissimilarities are themselves distances
in a metric space. More precisely, the metric MDS problem is
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Fig. 1. Map of the United States computed by classical MDS using the driving
distances between major cities published in a road atlas.

as follows: Given noisy distances between a set of points in a
Euclidean space, estimate the coordinates of those points. Clas-
sical MDS is a simple, global, noniterative technique developed
by Young and Householder [16] and made popular by Torg-
erson [13] for solving the metric MDS problem by decomposing
a “squared-distance matrix” containing the squares of all the
interpoint distances [3]. To illustrate, Fig. 1 shows a map of
the United States computed from the driving distances between
major cities published in a road atlas, using classical MDS. Even
though the driving distance between two cities is a poor approx-
imation to their actual distance, the resulting map is accurate.

In this paper we investigate several ways to use MDS to de-
termine the locations of microphones in a microphone array.
For relatively small microphone arrays (say, fewer than 10 mi-
crophones), a simple, cost-effective approach is to measure the
distances between each pair of microphones using a tape mea-
sure (or similar measuring device), and then to apply the clas-
sical MDS algorithm, which is presented in Section II. For sit-
uations in which a small array needs to be calibrated one time,
this method is a refreshing alternative to nonlinear optimization
or to techniques requiring an expensive calibration target.

If measuring all the inter-microphone distances is impractical
(e.g., when the number of microphones in the array is large),
one may instead use an extension to the classical MDS algo-
rithm that we call basis-point classical MDS (BCMDS), de-
rived in Section III. By measuring only the distances between
each microphone and a small number of basis points, the en-
tire squared-distance matrix can be constructed (because it is
rank-deficient) and then fed to the classical MDS algorithm as
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Fig. 2. Classical multidimensional scaling algorithm (A ).

before. We demonstrate in Section IV that, with common mi-
crophone array configurations, it is not difficult to select a set
of basis points so that BCMDS produces accuracy essentially
the same as that obtained with the entire set of measurements of
classical MDS, with much less effort.

In some scenarios it may be desirable, or even necessary, to
automatically calibrate an array rather than manually measuring
distances with a tape measure. In Section V, we show how to
determine automatically the microphone locations using a cali-
bration target with four sound sources (synchronized with each
other and with the microphones) which are treated as the basis
points. By cross-correlating the received signals with the ref-
erence signals, the distances between the microphones and the
sound sources can be computed automatically via time-delay es-
timation, from which BCMDS then computes the microphone
locations. This technique of automatic calibration is especially
useful for very large microphone arrays (such as the Huge Mi-
crophone Array [12]) or for arrays that need to be recalibrated
frequently.

This work can be viewed as an extension of the work by
Raykar et al. [9], [10], in which classical MDS is applied to
the geometric calibration problem by placing a speaker next to
each microphone and using time-delay estimation to measure
the distance between speakers and microphones. Our work pro-
vides algorithms that are applicable, not only when a speaker is
attached to each microphone, but also when just four speakers
are placed anywhere in the environment or when no speaker is
available. This paper also provides a detailed analysis of the ac-
curacy one can expect from these algorithms, along with insight
into the choice of parameters, thus providing researchers with
necessary information to make the best use of these algorithms
in real scenarios.

In contrast to MDS, traditional approaches to geometric
calibration involve minimizing a nonlinear functional [1], [8],
[11], [14], which generally requires an initial estimate and an
iterative algorithm. Moreover, some techniques, being designed
for applications in sonar, radar, or radio astronomy, assume
narrow-band sources and planar arrays of sensors [8], [14], thus
making them inapplicable to the present problem. Our work,
and MDS in general, can be seen as either a simpler alternative
to these nonlinear optimizations in that no initial estimate or
iterations are required (and therefore local minima are com-
pletely avoided), or as a way to provide an initial estimate for
further nonlinear estimation, as done in [9], [10].

After presenting the classical MDS algorithm in the next sec-
tion, we derive the BCMDS algorithm in Section III and analyze
both algorithms extensively in the simulations of Section IV.
Section V then describes and analyzes the method of automatic
calibration using a synchronized calibration target, followed by
a conclusion.

II. CLASSICAL MULTIDIMENSIONAL SCALING

Suppose we have microphones in a -dimensional space
(usually ). The classical multidimensional scaling algo-
rithm works as follows [2], [3]. First construct a squared-dis-
tance matrix such that each entry is the squared distance
between microphones and : ,
where is the distance between microphones and . From

compute the inner product matrix , where
is the double-centering matrix and is a

vector of all ones.
Without noise, , where

is the matrix of coordinates, and hence
. Since is symmetric positive

semi-definite, it may be decomposed as , where
, the diagonal matrix of eigenvalues of

, and , the matrix of corresponding unit
eigenvectors. For convenience the eigenvalues are labeled so
that . Since is of rank , it has nonzero
eigenvalues and zero eigenvalues and hence may be
written as , where and

. The coordinate matrix is then given by
.

With noise (i.e., the measured distances are imperfect),
will not be of rank but rather will be full rank in practice:

. Conveniently, still yields the op-
timal estimate of the coordinates in the space of dimensionality

, in the sense that is minimized, where
is the estimated distance between the two microphones. In

the terminology of principal components analysis (PCA),
contains the eigenvectors that capture the most significant
variation in the data [6]. In fact, the classical MDS algorithm
is identical to the PCA algorithm. For brevity we will refer to
the classical MDS algorithm, which is summarized in Fig. 2, as

.
It is important to notice that, because the algorithm receives

as input only the distances between points, the resulting coordi-
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Fig. 3. Number of measurements needed for all pairwise distances (solid line)
and for distances to basis points (dashed line), in three dimensions.

nates are unique only up to an arbitrary translation, rotation, and
reflection. In other words, for any normalized orthogonal matrix

, . Translation is handled by
first shifting all the points so that their centroid coincides with
the origin. Then the root-mean-square (rms) error in the solution
compared with ground truth is computed as

rms (1)

where is the th row of , is the th row of the ground-
truth matrix , and denotes the Euclidean norm. is the
normalized orthogonal matrix that best aligns the points by ro-
tating and reflecting them [3]

Equation (1) is similar to Procrustes’ analysis [3] except that it
does not allow for scale changes between the point sets.

III. MDS EXTENSION TO HANDLE MISSING DATA

Since without noise is of rank , there is much redundancy
in and . In fact, in this section we show that in a -dimen-
sional space all the distances can be calculated given
only the distances between each point and a set of basis
points. Assuming the set of basis points is a subset of the micro-
phones, then we need to measure just the distances
between all basis points and the distances be-
tween each basis point and each of the nonbasis-point
microphones. The number of measurements becomes linear in
the number of microphones, as opposed to quadratic, as shown
in Fig. 3. The savings can be significant: 70 measurements in-
stead of 190 for , or 190 measurements instead of 1225
for . Below we derive a basis for the three-dimensional
world (3-D) by first doing so for one–dimensional (1-D) and
two–dimensional (2-D). This derivation is based on the equa-
tions of Young and Cliff [15].

A. Deriving a 1-D Basis

Suppose we measure the distance between two points
and . If we are allowed to translate and rotate the coordinate
axes freely, we may place these two points on the axis (i.e.,

) and set their midpoint as the origin,
thus obtaining the following coordinates for the points:

where we have arbitrarily chosen the sign.
and define a basis for a 1-D space. Given the distances
and between and and some point , the definition

of Euclidean distance gives

(2)

Combining these equations and solving for yields

(3)

Thus, (3) provides the -coordinate of an arbitrary point given
the distances between it and the basis points and .

B. Deriving a 2-D Basis

If does not lie on the line connecting and (the axis),
then its residual distance to that line will be nonzero. The square
of the residual distance from to the -axis can be computed
from (2) and (3)

(4)

Rearranging terms yields a convenient formula that we will use
again

(5)

Let us orient the axes so that a third point lies in the -plane
(i.e., ). By substituting for , is computed using
(3) and is found from (4)

where we have arbitrarily chosen the positive square root.
, , and now provide a basis for a 2-D space. Given the

distances , , and for some point , the definition
of Euclidean distance gives
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Fig. 4. Basis-point classical MDS algorithm (A ).

Expanding the squares, rearranging terms, substituting (5), and
solving for yields

(6)
Thus, (3) and (6) provide the - and -coordinates of an arbitrary
point given the distances between it and the basis points ,

, and .

C. Deriving a 3-D Basis

If a point does not lie in the -plane, then its residual dis-
tance to the plane will be nonzero. Let us select such a point as
a fourth basis point , where and are found using (3)
and (6), respectively, and is computed by applying (5) to ,
yielding

where we have again arbitrarily chosen the positive square root.
The points , , , and now provide a basis for a 3-D

space. Given the distances , , , and for some
point , the definition of distance for gives, after substi-
tuting (5) and solving for

(7)

Thus, (3), (6), and (7) provide the -, -, and -coordinates of
an arbitrary point given the distances between it and the basis
points , , , and . These equations can be combined with
classical MDS, as summarized in Fig. 4. We call the resulting

algorithm basis-point classical MDS (BCMDS), and refer to it
throughout the rest of this paper as .

IV. SIMULATIONS

In this section, we analyze the performance of the algorithms
and using simulations in Matlab in which we vary the

microphone array geometries, noise types and levels, and choice
of basis points. We also perform an analysis regarding the choice
of dimensionality for a nearly-planar array.

The four microphone array geometries we used in the simu-
lations are shown in Fig. 5. The microphones were distributed,
using a uniform random distribution

1) throughout the interior of a cube;
2) on the surface of four sides of the cube;
3) on the surface of two perpendicular planes sharing a

common edge;
4) on the surface of a single plane.

We will refer to these four configurations as , , , ,
respectively. We chose the length of a side in all cases to be 5
m, although other sizes yield similar results. All experiments for
the first three configurations were conducted with , while
those for used .

A. Perturbing Distances With Gaussian Noise

For each of the configurations, we ran after corrupting the
distances with additive, independent Gaussian noise with

, evaluating the output using the error metric given in (1).
The number of microphones ranged from 4 to 20. The results are
displayed in Fig. 6, where each data point represents the average
over 1000 trials. For realistic measurement error possible with
even an inexpensive measuring device such as a tape measure,
the rms error remains less than 12 mm for all configurations and
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Fig. 5. Four microphone array configurations.

Fig. 6. Classical MDS (A ) is accurate and robust with respect to Gaussian
measurement noise.

all values of . In addition to the results shown in the figure, the
rms varies linearly with the amount of measurement noise. As
expected, the best results were obtained with because of the
additional constraint afforded by the planar geometry, while the
maximum error was obtained with , the 3-D array composed
of the smallest number of planes.

Fig. 7. Classical MDS (A ) is sensitive to impulse measurement noise
(e.g., missing data).

B. Handling Missing Data

Classical MDS is not so forgiving with impulse noise, as
shown in Fig. 7 where 1% of the distances were set to zero (sim-
ilar results were achieved with other values) to simulate missing
data. Each data point again represents the average of 1000 trials.
With even a small fraction of the distances missing, the rms error
is in the hundreds of millimeters, with the error even in the best
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Fig. 8. BDMDS (A ) robustly handles missing data. Although the error increases as fewer measurements are available, the error remains below 9 mm throughout.
(a) n = 10. (b) n = 50.

Fig. 9. Contour plot of rms error (in millimeters) for different arrangements of 1-D basis points in a 5 � 5 m room. The two squares are the basis points A and
B, while the circle is the basis point C . The areas of the triangles, in square meters, are (a) 0.43, (b) 0.10, (c) 0.93, (d) 1.73, (e) 0.20, and (f) 0.43.

case ( with ) greater than 100 mm. Clearly, when
some data are missing we cannot simply ignore that fact.

To test the ability of to handle missing data, we selected
as a basis set the four microphones enclosing the maximum
volume, as explained in the next subsection. We varied the frac-
tion of missing entries in from 0 to the maximum allowable

, filling these entries using the equations of
Section III. Remaining entries were computed using inter-mi-
crophone distances corrupted by Gaussian noise ,
as before. Plotted in Fig. 8 are the results, averaged over 100
trials per data point. The rms error remains below 9 mm for

, even when nearly 40% of the measurements are un-

available, and also below 9 mm for , even when nearly
80% of the measurements are unavailable. These results confirm
the statements of previous researchers that only about 25%–33%
of the measurements are needed in practice [4], [5].

C. Choice of Basis Points

The accuracy of depends upon the choice of basis points.
Because an analytic sensitivity analysis of the algorithm is
intractable, we instead measured its sensitivity to the basis
point locations by running on several different basis-point
arrangements, as shown in Fig. 9. Starting with an equilateral
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Fig. 10. In general, rms error decreases as the volume or area enclosed by the basis points increases. Rms error from A versus (a) volume for 
 and
(b) area for 
 .

triangle with adjacent points 1 m apart as the first arrangement,
we moved the points in various directions to construct the other
arrangements. For each arrangement, we ran to compute the
locations of all possible points in a 5 m 5 m room, sampled
on a grid with m between adjacent points. As before, all
the distances were perturbed with Gaussian noise ,
and each result is the average of 100 trials. The resulting
contour plots, displayed in the figure, show that the least error
is achieved with the equilateral triangles [Fig. 9(a) and (d)], the
larger one yielding slightly better results. Not surprisingly, the
error increases as the points become nearly collinear [Fig. 9(b),
(e), and (f)]; and as the distance between and the line joining

and increases, the error increases in the direction of the
move and decreases in the perpendicular direction [Fig. 9(c)].

From these contour plots we learn three conditions that im-
prove the results of the algorithm: (1) A large distance between

and , (2) a large distance between and the line joining
and , and (3) nearly equidistant from and . By similar
argumentation, the results in 3-D are improved if there is also
a large distance between and the plane containing , , and

. Although these heuristics cannot, to our knowledge, be cap-
tured in a single, compact formula, a convenient and reasonable
approximation is the volume (or area in 1-D) enclosed by the
basis points. Recall that the volume enclosed by four points in
3-D is given by , where the prime

denotes homogeneous coordinates and the vertical bars
denote the matrix determinant; similarly the area enclosed by
three points in 2-D is given by . Shown
in Fig. 10 is a plot of rms error versus volume enclosed by the
basis points of , and versus area enclosed by the basis points
of , both with . The plots include only those arrange-
ments for which the angle between the segments connecting any
two pairs of basis points is at least 40 (for ) or 20 (for ).
Generally speaking, the error decreases as the volume or area in-
creases, and for any reasonable choice of basis points the error
is below 16 mm. Only when the basis points enclose a volume
less than 20% of the size of the room, or an area less than 35%
of the size of the plane, does the error increase above this level.

D. Choosing for a Nearly Planar Array

It is clear that should be set to two when all the microphones
are coplanar (2-D), while it should be set to three when they are
noncoplanar (3-D). A question remains, however: If the micro-
phones are nearly, but not exactly, coplanar, what will be the
result of choosing the wrong value for ?

To answer this question, we perturbed the planar microphones
of in the direction perpendicular to the plane with different
Gaussian distributions (the greater the variance in the distribu-
tion, the less coplanarity in the microphones). Shown in Fig. 11
are the results of running and on the resulting micro-
phone positions for both and . As expected, the
error for increases as the microphone positions deviate
from the plane, while the error for decreases. The two
choices yield approximately the same error with a perturbation
of about 150 mm for or 350 mm for , the results for
being significantly worse than those for . These experiments
show that caution should be exercised in using either of the al-
gorithms for an array that is fairly flat but not exactly planar, be-
cause there exist geometries for which the resulting error may
be unacceptable. In such a case it is advised to augment the mea-
surements using additional points in the environment to provide
better 3-D information, and then to set . The solid line in
the plots shows a vast improvement by simply adding a single
point located at (2.5, 0, 2.5) m, that is, centered with the array
but 5 m away in the direction perpendicular to the plane.

V. AUTOMATIC CALIBRATION USING A CALIBRATION TARGET

Up to now, the basis points for have been a subset of the
microphones, and the interpoint distances have been measured
presumably with a tape measure, or similar device. Since
works for any basis points in the space, however, an alternative
is to use a calibration target consisting of four speakers rigidly
attached to one another, with the four speakers being the basis
points. By measuring the inter-speaker distances
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Fig. 11. For a nearly planar array, the rms error of the algorithms may be unacceptable no matter the choice of p, especially for A . Results are significantly
improved, though, by using an additional point in the environment that is outside the plane (solid line). (a) A , n = 8; (b) A , n = 25; (c) A , n = 8; (d) A ,
n = 25.

with a tape measure and the distances between micro-
phones and speakers using time-delay estimation, yields an
automatic, global, noniterative technique for computing the mi-
crophone locations.

Measuring the distances between speakers and microphones
requires that we have access to the reference signal emitted by
each speaker, synchronized with the signals received by the mi-
crophones. One way to achieve this prerequisite is to synchro-
nize the speaker emission with the microphone digitizers and to
use the waveform sent to the speaker as the reference. This syn-
chronization can be achieved by sending and receiving from the
same computer with real-time control of the timing of the two
activities, or by modulating a radio-frequency (RF) signal that
travels instantaneously compared with the sound wave [9]. An-
other way is to place an extra microphone as closely as possible
to each speaker to capture the sound as soon as it is emitted [10].
This extra microphone, whose digitizer must be synchronized
with the other microphones’ digitizers, provides the reference

signal. Either way, time-delay estimation cross-correlates the
reference signal with the signals received by the microphones to
estimate the time it took sound to travel from the source to the
microphone. For a good description of the difficulties and details
encountered using a calibration target, including the complica-
tions arising from changes in the speed of sound, please consult
Sachar et al. [11].

For our purposes, we assume that these problems are solved,
and that the distances between speakers and microphones can be
measured. In this subsection we wish to evaluate the sensitivity
of to the location and size of the calibration target and to
gain insight toward the choice of these parameters. To maximize
the accuracy of the algorithm the shape of the calibration target
was chosen to be a right, regular, triangle-based pyramid, which
maximizes the volume enclosed by the speakers, as explained in
the previous section.

For all four configurations , we placed the simulated
pyramidal target in the center of a simulated room,
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Fig. 12. Rms error for A versus size and position of the calibration target. With sufficient size, the target achieves small error. (a) Size. (b) x-coordinate.
(c) y-coordinate.

resting on the floor, so that the coordinates of the center of its
base were (2.5, 0, 2.5) m. For each configuration we first uni-
formly scaled the target, varying the pyramidal edge length from
0.1 to 5 m in increments of 0.1 m. Then, setting the length to 3 m,
we varied the target’s -coordinate, sliding the target from one
end of the room to the other. Finally, setting the -coordinate to
2.5 m, we varied the -coordinate in a similar manner. Due to
the symmetry between and , we kept the -coordinate con-
stant throughout. In all simulations we required the calibration
target to remain inside the room, and all distance measurements
were corrupted by zero-mean Gaussian noise with .

Several conclusions can be drawn from these results, which
are displayed in Fig. 12. As expected, the error of the 3-D arrays

was generally less than that of the planar array be-
cause the computation was performed with . Also, the
error decreased with the size of the calibration target, reaching
20 mm when the pyramidal edge was approximately 3 m. Po-
sition had less effect on the results, but in all cases the least
error occurred when the distance from the target to the farthest
microphone was minimized. This goal was generally achieved
by keeping the target in the center of the room, except in the
case of , where moving the target toward the array minimized
this distance. Keep in mind that these simulations modeled the
speakers as point sources and thus ignored near-field effects that
would occur in a real environment as the speakers approach the
microphones.

VI. CONCLUSION

The positions of microphones in an array can be computed
using a global, noniterative algorithm derived many years ago
called classical MDS. The algorithm requires as input only the
distances between microphones, which can be measured with
a tape measure or similar device. We have extended the basic
algorithm to compute these positions using only the distances
between the microphones and a small set of basis points. The re-
sulting technique, which we call BCMDS, is applicable in situa-
tions where it is not feasible to measure all the inter-microphone
distances, such as with an array containing many microphones.
We have also shown that BCMDS facilitates automatic calibra-
tion using a calibration target, where speakers that are rigidly
attached to the target are the basis points.

Both classical MDS and BCMDS can be viewed as either sim-
pler alternatives to the more traditional nonlinear optimization
approaches because they require no initial solution, require no
iterations, and are not subject to local minima; or they can be
viewed as a way to provide an initial estimate for such non-
linear optimization. Either way, some care must be exercised in
order to achieve good results: 1) for BCMDS, the basis points
should be selected so that they maximize the enclosed volume
(or area in 2-D); 2) with a calibration target, the speakers should
be placed as far away from each other as possible; and 3) for
arrays that are nearly but not exactly planar one should use ad-
ditional points in the scene, for both algorithms, to reduce the
error. We have shown that, when this advice is heeded, accuracy
on the order of 10–20 mm can be achieved with both classical
MDS and BCMDS on a variety of microphone array geometries,
thus demonstrating their applicability in realistic scenarios.
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