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Abstract— We present a method to recover complete 3D mod- object that are not currently visible. In grasping systems i
els of articulated objects. Structure-from-motion techniques &  which the robot has a complete 3D CAD model of the object,
used to capture 3D point cloud models of the object in two such knowledge has always been assumed. However, in an

different configurations. A novel combination of Procrustes . ¢ ti t . hich th bot is | . bout th
analysis and RANSAC facilitates a straightforward geometric Interactive system in whic € robot IS fearning about the

approach to recovering the joint axes, as well as classifying them €nvironment as it moves in space, such complete knowledge
automatically as either revolute or prismatic. With the resulting  is not usually available.
articulated model, a robotic system is able to manipulate the  \We describe an occlusion-aware reconstruction system that
object along its joint axes at a specified grasp point in order s apia 19 recover complete 3D models of articulated objects
to exercise its degr_ees of freedom. Because the mode_ls captureI tured of the obiect in twi fi . d
all sides of the object, they areoccluded-aware, enabling the mages are cap ur? 0 e_o Ject In two configurations, an
robotic system to plan paths to parts of the object that are Structure-from-motion techniques are used to reconstwet
not visible in the current view. Our algorithm does not require 3D models of the object. Procrustes analysis and RANSAC
prior knowledge of the object, nor does it make any assumptions  sampling are then used to automatically segment the points
about the planarity of the object or scene. Experiments with 54 3lign the links, from which a straightforward geometric
a PUMA 500 robotic arm demonstrate the effectiveness of . . . .
the approach on a variety of objects with both revolute and approach enables the estimation of the revolute or prismati
prismatic joints. axes. Once the model has been recovered, the robot can
align its coordinate system with that of the model and
I. INTRODUCTION then manipulate the object by exercising the degrees of
An important trend in robotics is that of autonomousreedom captured by the model. Our approach makes no
operation in unstructured and dynamic environments. Aslanar assumptions, either on the shape of the object syrfac
robots move into unstructured environments such as homelse motion of the object, or the viewpoint from the camera.
schools, and workplaces, new approaches to sensing ang show the results of the system on a variety of everyday
manipulation will be required to handle the greater varietpbjects, demonstrating the effectiveness of the approach.
of objects encountered. For example, rather than expecting
the robot to have advanced knowledge of all objects that will Il. PREVIOUS WORK
be encountered in the physical world, the ability to acjivel One approach to articulated reconstruction is based upon
learn about the scene will be crucial. the factorization method [1], [22]. Exploiting the so-eall
One problem that has recently caught the attention @énk constraint this method reveals the structure of mul-
researchers is that of reconstructiagiculated objects [9], tiple independently moving bodies by examining the block
[19], [20], [21]. These objects consist of rigid links costed  diagonal structure of the measurement matrix consisting of
by one or more revolute or prismatic joints. A number ofcoordinates of tracked feature points. Building on thiskyor
everyday objects, such as laptop computers, staplerspssjs Tresadern and Reid [23] add articulation constraints to the
cabinet drawers, doors, and some cell phones fit suchfarmulation to decrease the rank, enabling the technique
model. Even a desk or chair sliding on the floor can bé& detect the articulated objects, determine their degoges
modeled, to some degree, by prismatic and revolute jointsfreedom, and locate the joints. Because the factorization
Existing work on articulated objects has been limitedmethod is limited to affine reconstruction, an additiondf-se
however, to reconstructing surfaces from a single viewpoincalibration step is needed to convert measurements to a
By tracking features in video, clustering those features, a metric coordinate system.
triangulating, the 3D coordinates of a number of points can Yan and Pollefeys [28] also investigate the subspace
be estimated, along with the axis of rotation or slidingproperties of articulated motion in a factorization frame-
However, such results do not yield any information about theork. Their approach segments feature trajectories byl loca
back side of the object. Such an approach leaves the rols@mpling and spectral clustering, after which it builds the
helpless in any scenario in which it needs to manipulatesparkinematic chain as a minimum spanning tree of a graph
of the object that are not visible in the current view. constructed from the segmented motion subspaces. Focused
In this paper we introduce the terpcclusion awareto  on recovering human articulated motion, they derive rank
refer to a system that has knowledge about parts of tlmnstraints for both revolute (1 DOF) and ball (2 DOF)



joints, assuming affine projection. Similar work by Ross ethis difficult chicken-and-egg problem. If progress is made
al. [14] recovers the kinematic structure of the articudatetoward developing such autonomous exploratory behavior in
object as a skeleton using a probabilistic approach. Due the future, the reconstruction method described in thi:pap
the difficulty of tracking features through occlusion, thei would still apply.
video-based approach is also limited to single viewpoints, Additional images are gathered of the object in the new
as well as to affine projection. Other researchers focusirgpnfiguration, and structure-from-motion is again apptied
on human motion aim to recover the joint parameters of thebtain a different 3D reconstruction. These two 3D models
human from video or motion capture [4], [7], [10], [13], [16] are segmented into the object’s constituent componegisl (ri

In the robotics community, Katz et al. [9] track featurelinks) using the Procrustes analysis method combined with
points in video, then perform motion segmentation, and RANSAC sampling strategy. From this information, the
finally 3D reconstruction. Assuming that the plane perperaxis of each joint between neighboring links is found using
dicular to the axis of rotation, or the plane in which slidinga geometric method utilizing an axis-angle representation
occurs, is known, the revolute or prismatic axis is recodere Based on these models, the robot with eye-in-hand can
Relying on feature points, this approach is also restrictegutomatically compute the transformation between theabbje
to single-view reconstruction. Other researchers haveldevand robot coordinate systems, enabling it to manipulate the
oped approaches to recover articulated motion using knovabject around the articulation axis with a given grasp point
models [29] or revolute axes using planar surfaces [15]. Due to the complete 3D model, the robot can also interact

In other robotics work, Sturm et al. [21] present arwith occluded, unseen parts of the object, as shown in
approach to learn kinematic models based on observatioRigure 2. We now describe these steps in detail.
from a motion capture system that tracks the poses and
orientations of rigid parts. A mixture of parameterized and
parameter-free (Gaussian process) representationsdstase
detect the connectivity of the rigid parts of the objects tnd
find low-dimensional articulation models that best exptaim
given observation. In related work, Sturm et al. [20] présen .
an approach to learn articulation models of cabinet doods an T B R
drawers without using artificial markers. Rectangles intdep
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are detected using a sampling-based approach, assuming tha 1
object surfaces are planar. Then the robot uses generative ‘ detect H register H manipulate ‘

object models to estimate the type of articulation (rewslut
or prismatic). Once obtained, these articulated models are

used to interact with the environment [19] Fig. 1.  Overview of our system. Two 3D models of the object are
' constructed using structure-from-motion techniques agpietwo sets of

images of the object taken while the object is in two differammfigurations.

I1l. OCCLUSION-AWARE RECONSTRUCTION After segmenting and aligning the links, the joint axes betwveeighboring

The purpose of this work is to automatically learn théink_s are found. M_anipulation of the object is then enablgdbtomatically
h L. . . f registering the object and robot coordinate frames.

properties of priori unknown articulated objects in unstruc-
tured environments in order to facilitate further manipioka
of those objects. Figure 1 shows an overview of our system
First, a set of images is captured by a camera of the objec
from different viewpoints while the object remains station
Structure-from-motion techniques are applied to the image
to build a 3D model of the object. In order to learn the
object’s kinematic structure, the configuration of the abje |
o . o \
is interactively changed by exercising its degrees of foeed

We assume that the capability of performing sufficient
exploratory interaction with the object to change its con- _ _ _
figuraton s present. In this way, the approach bears sorflé 2, Tie PUMA, 500 robetc m merinuttes 2 (o buek uing
resemblance to interactive perception [8], [9], [25], [26]reconstruction procedure.
[27], except that we allow a human to perform the interaction
due to the specific constraints of articulated motion in our )
objects. Automatically planning the end effector motiorf®: Object Model
path for interactive perception in such situations remains  We assume that the articulated object is composed of rigid
unsolved problem, because a preliminary model (at leadihks connected by joints. The object can have any finite
is needed in order to interact with the object, but th@umber of links and joints, and the joints can be revolute
interaction is necessary to estimate the model. Therefora; prismatic. Figure 3 shows the two object models for
having the user perform the interaction enables us to escagienplified cases of just two links and one joint. In the case




of a revolute joint, the configuration between the two links i
represented by the joint angle, while in the case of a prismat
joint, the configuration is represented by the displacement
In both cases, the axis is a ray in 3D space about or along
which the movement occurs. The links are represented as 3D
point clouds, with a coordinate system attached to each link
to enable its position and orientation to be described.

link1

Fig. 3. LEFT: Two rigid links connected by a revolute jointi&HT: Two
rigid links connected by a prismatic joint.

B. Camera Calibration and Initial 3D Models Fig. 4. Four images (out of 112 captured) of a toy truck. Thertas shows
Given a set of images from different viewpoints of thethe 3D reconstruction (two different views) obtained by #tiicture-from-
object in one configuration, SIFT and patch-based featgg%c’tt'r?: gggﬁeggs'a'gnwc:flcglss't?]g'?;’;ﬁfaTg?gé(':,eprgcf“wd irchwipoints
points are detected and matched, and structure from motion
(SfM) algorithms are used to estimate the camera positions
and the 3D coordinates of points on the object. The same
procedure is applied to a set of images obtained of the
object in a different configuration to yield a second 3D
model, where in the second configuration all adjacent links
have moved relative to each other. Note that only two
configurations are needed, no matter how many links anc
joints. The Bundler algorithm [17], [18] is used to calikerat
the camera and compute the camera locations. Patch-bast
multi-view stereo (PMVS) [5], [6] is used to reconstruct
dense 3D oriented points, where each point has an associatge’
3D location, surface normal, and a set of visible images.
Figures 4 and 5 show the dense 3D reconstruction of
toy truck in two different configurations. Notice that no
assumption is made regarding the planarity of the object
geometry or the uniformity of the background. There is no
constraint on the set of images, except that there must b
sufficient overlap in the fields of view in order to facilitate
feature matching across different views. In our experience
successive camera viewpoints should differ by no more
than about 10 degrees, so that approximately 36 image:
are needed to capture an accurate 360-degree model; mo
images are needed to reconstruct the top or bottom of the
object.

C. Rigid Link Segmentation

_ Once the 3D models 'have bee'n fqund1 the neXt_ St8fy. 5. Four images (out of 132 captured) after interactinghvihe

is to segment the 3D oriented points into the constituemtick to change its configuration. The last row shows the 3@mstruction

rigid components of the object. This involves automatjcall (two different views) by the structure-from-motion proceeluNotice the
. . . . significant change in lighting conditions.

determining the number of links, segmenting the data into

the different sets (one set per link), and determining which



links are connected. When there are just two links (as iRrocrustes computes the rotation about the origin of the-coo
the case of the toy truck, which is composed of a calbinate system, which is somewhat arbitrarily determined by
and bed), the latter step is trivial, but in more complicatethe structure-from-motion technique. While these rotation
scenarios it is important to determine which links share themselves are identical, a non-zero translatios needed
joint. Segmentation is performed by clustering featurenf®i to compensate for the misalignment. As a result, we instead
according to similarity transformations, using a comhimrat determine the type of joint automatically by examining the
of SIFT, Procrustes, and RANSAC algorithms. rotation matrixR: If R is close to the identity matrix, then

Feature points are found using the SIFT feature detecttite joint is determined to be a prismatic joint; otherwise it
[11] because of its invariance to image rotation, scalimgl a is a revolute joint. This procedure is repeated for each pair
lighting changes. SIFT provides a local descriptor for eachf adjacent links.
feature in addition to the feature’s location. For eventidea
point in the first configuration, a matching feature pointia
second configuration is sought. The matching feature point Locating the axis of a prismatic joint is straightforward.
is the one that yields the minimum Euclidean distance dbiven two links connected by a prismatic axis, we assume
SIFT descriptors, if that distance is below a threshold. Ithat the smaller link moves relative to the larger one, where
such a match is found, then the same matching algoriththe size of the link is determined by the number of points
is run in reverse by switching the role of the images, anth the link. Therefore, the unit vectdr||t|| from the larger
matches are retained if they agree in both directions. ThelBk to the smaller link yields the direction of motion along
2D matches are converted to 3D matches using the 3D modbE prismatic joint, while the centroid of the points of the
points whose projection lies closest to the correspondingmaller link provides the 3D coordinates of a point on the
SIFT features. axis.

Given 3D feature correspondences between the two mod- = )
els, our aim is to segment the 3D model points according‘ Finding the Axes of Revolute Joints
to their similarity transformations. Similarity transfoa- Locating the axis of a revolute joint requires a bit more
tions include rotation, translation, and scale, the ldtging care. In a two-dimensional plane, it is a simple matter to
needed to handle the scale ambiguity in images. A RANSAGhow that any Euclidean transformation (rotation plussran
sampling strategy [3] is adopted in which randomly selecteltion) can be represented as a rotation applied to trauslat
triplets of correspondences are used to compute putatipeints. In other wordsix+t = R(X—w)+w, wherex € R?
similarity transformations using Procrustes analysisor (F is a point in the plane, and € R? are the coordinates of the
Procrustes, we use the SVD algorithm [2].) Each resultingxis of rotation. Thus, instead of rotating and then trairsia
transformation is used to align the 3D point clouds, yieldin a point, this alternate formulation involves shifting thegmn
an alignment error computed as the mean squared ermirthe coordinate system, applying the rotation, then isigjft
of the Euclidean coordinates of the corresponding pointghe origin back. As a result, the temporary originabout
Within the RANSAC framework, this process is repeatedavhich the rotation is applied specifies the axis of rotation.
1000 times using different randomly selected triplets, anBigure 6 shows the axis of rotation, indicated by a red dot,
the transformation that results in the smallest alignmergstimated by our system for two different objects.
error is retained. Using this transformation, all modelng®i
that transform to coordinates within some threshold ofrthei
match are segmented as a new link. These points are the
removed from the models, and the entire process is repeate -
until no more links can be found (i.e., the smallest alignimen
error exceeds a threshold).

t E. Finding the Axes of Prismatic Joints

D. Classifying Joints

We assume that two rigid links are connected by either
a revolute joint or a prismatic joint. The type of joint Fig. 6. Revolute axis estimation of pliers (left) and sciss@ight) in 2D
is automatically determined by examining the similarityfound by our method. The red dot indicates the estimated axistafion.
transformationR, t, ando between the links determined by
Procrustes alignment, wherR is the rotation matrixt is In 3D, the axis of a revolute joint is defined by a unit vector
the translation vector, and is the relative scaling between u indicating the axis direction and one (somewhat arbitrary)
the two models. Although one might be inclined to use theoint on the axis. Using the axis-angle representation, the
translation vectot to distinguish between the two types ofrotation matrix between two corresponding links in the two
joints, it is important to note that will not in general be configurations is parameterized as a unit vector indicating
zero for a revolute joint. This is because the axis of théhe direction of a free vector parallel to the axis of rotatio
coordinate system attached to the link does not necessdtlge axis direction), and an angle describing the magnitude
(and usually will not) align with the axis of rotation. In @h of the rotation about the axis in the right-hand sense. After
words, although we are interested in rotation about the axialigning the 3D models, and segmenting into links, the



transformation between two corresponding links in the twbetween the observed projections and the projected points,
configurations is computed using Procrustes analysis.nGiveising the camera matrix and lens distortion coefficients
the rotation matrix, the axis direction is found by noticingobtained from camera calibration.
that any vector parallel to the rotation axis must remain
(by definition) unchanged by the rotation, i.e?u = u, V. EXPERIMENTAL RESULTS
whereu is a vector parallel to the rotation axis. From the We evaluated the performance of our approach on several
definition of eigenvalues and eigenvectors, this means thdifferent objects, including scissors, pliers, a toy truek
the axis direction is the eigenvector &f corresponding to Barrett robot hand, and a drawer. For our experiments, we
the eigenvalue of one. used a PUMA 500 robotic arm and a Logitech Quickcam
Once the direction of the axis has been found, the 3D Pro 5000. Images of the object were gathered at multiple
rotation about this axis can be thought of as a 2D rotatiopositions, then the configuration of the object was changed,
in the plane perpendicular to. To find the rotation plane, and a new set of images was collected. The sets of images
a series of rotations are applied to two configurations suchere fed to our procedure, which automatically produced the
that the z axis of a new coordinate system points in the3D models, registered the models, segmented the links, and
u direction and thery plane specifies the plane in whichestimated the axis or axes. The collecting of images can be
the rotation occurs. Then, similar to the 2D axis estimatioperformed either off-line by a person, or on-line by the itobo
above, a point in the 2D plane indicating the axis is foundyith a scripted path.
which then yields a 3D point on the axis by appropriate We first demonstrate the proposed approach on one-axis
transformations. Together these two parameters (the ax@volute objects lying on a table, with the revolute axis
direction and a point on the axis) determine the axis. perpendicular to the table top, as shown in Figure 7. Similar
to the work of Katz and Brock [8], our approach is able to
IV. MANIPULATING OBJECTS accurately estimate the axes of objects such as pliers ®r sci
The resulting occlusion-aware 3D articulated model casors. Unlike [8], however, our approach makes no assumption
be used to enable a robot to manipulate the object. Twabout the objects lying on the table, and it does not have prio
capabilities are supported by such a model. First, given kmowledge about the perpendicularity of the rotation axis
particular point on the object, the robot can move its endnd the table top. Rather, the axis is automatically eséichat
effector to that position, even if the point is not visible inin 3D, thereby also estimating the rotation plane for future
the current view. This is one of the main advantages ahanipulation of the object from arbitrary positions. In the
the occlusion-aware approach, namely, that the robot is ncase of the pliers, the angle between the axis and the table
limited only to the side of the object that is currently visip (which was estimated by fitting a plane to 58 points on the
but rather that a full 3D model is available. Secondly, givemable) differed from 90 by just 7.2.
a particular grasp point, the robot can grab the object at tha The next experiment involved a Barrett robot hand, which
point and move in such a way so as to exercise the articulatesda three-fingered gripper. The middle fingéf3] is fixed
joint. with respect to the central base, while the other two fingers
The first step for manipulation is to estimate the transfortF'1 and F'2) rotate about the base symmetrically, e.=
mation between the object model and the robot coordinatg, as illustrated in Figure 8. Sets of images were captured
frame. To make this a Euclidean transformation, we firstf the hand in the two configurations. Figure 9 shows the
must overcome the scale ambiguity. The scale of the objetto configurations, along with the 3D models reconstructed
can be estimated in one of several ways. If the camera liy our system and the axis of rotation which was correctly
attached to the robot during capture time, then the knowestimated. By fitting a plane to 20 points on the table, the
positions of the end effector can be compared with thangle of the axis with respect to the table was measured to
estimated camera positions to determine the overall scdbe 89.5, which is just 0.5 from 9C°.
of the scene. Alternatively, a separate step can compute theAnother articulated object with two links and a single
projective distance from the camera to the table, which ievolute joint is the toy dump truck shown in Figure 10.
then compared with the known height of the table. A thirdDuring the interaction, 112 images were captured of the first
alternative is to simply use a known length on the object. configuration, and 132 images were captured of the second
In any case, once the scale is known, the perspective oenfiguration. The 3D reconstructions and estimated miati
point (PNP) problem [12] can be solved for the Euclideamxis of the bed are shown in the figure. The angle of the axis
transformation between the object coordinate system and tith respect to the table (obtained by fitting a plane to 20
camera coordinate system. The transformation between tpeints) was measured to be 1.4
latter and the robot coordinate system can be computed off-Our approach also works with articulated objects with
line by a standard hand-eye calibration procedure [24} witprismatic joints. In Figure 11, the first row shows a drawer of
the camera mounted on the robot. The PNP procedure begmsabinet in two configurations. Since drawers of the cabinet
with 3D-2D point correspondences found by extracting andre plastic with transparency, we attached a small textured
matching SIFT features [11] in the image with 3D pointsiece of cardboard to the face of the first drawer in order
in the model. Using these correspondences, it minimizés reconstruct the 3D models. The second row of Figure 11
the reprojection error that is the sum of squared distancebows the 3D models corresponding to the first row with the



Fig. 10. Axis estimation of the toy dump truckoP: images (out of 112
and 132, respectively) of the two configurations of the tri8kTTOM: 3D
reconstructions with the estimated axis (red line).

Fig. 7. Revolute axis estimation of pliers in 3D. Shown are iezagf
the pliers (out of 65 and 81, respectively) in two configunasi (top row),
along with 3D reconstructions from different views with tbeerlaid red
line indicating the estimated axis (bottom two rows). Resfiir scissors
are similar.

F2 - . N . )
F1 Fig. 11. Axis estimation of the drawer of the cabinet. The fiost shows
two images (out of 115 and 83, respectively) of the two conéijans, and
the second row shows 3D reconstructions with the estimatisd(ieed line).

-~y

estimated axis indicated by a red line. We can see that the
frame and first drawer of the cabinet were well reconstrycted
_ _ _ and that the prismatic axis was found correctly. The angle of
T it o o oo 15 oo e S i 18 @IS Wih respect o  horizortal bar on the side of the
two fingers ¢'1 and '2) move relative to the base in a symmetric mannerc@binet was found to be 3.4
(01 = 62). We have also experimented with objects having multiple
joints. Figure 12 shows an example of a scraper truck with
two revolute joints, showing that the estimated axes are
accurate. The angle between the estimated axes washti6
some of this deviation is due not to error from the algorithm
but rather to the pliability of the plastic toy resulting findm-
precise manufacturing. Note that the difficulty of automati
segmentation increases significantly as the number ofsjoint
increases, particularly with untextured objects. The odst
the algorithm, however, is largely unaffected by the number
of joints.

VI. CONCLUSION

In this paper, we have proposed an approach to extract

Fig. 9. § fIWO image?fs of the Betrret; han(;i (hout3of 87 and 87, rekﬁ) the 3D surface and kinematic structure of articulated dbjec
in two different configurations (top), and the 3D recondinres with the ; : ; ; ;
estimated axis overlaid (red line, bottom) Multiple pictures are taken of the object in two differenteo

figurations, and 3D models are reconstructed using stretctur



Fig. 12.  Occlusion-aware reconstruction of an articuladdgect with
multiple axes. For the two configurations, 111 and 134 imagsgectively,
were captured.

[12]

(23]

[14]

[15]

[16]

[17]
(18]

[19]

from-motion techniques based on images captured by a sin-
gle camera. From these models, the rigid links of the objegiq)
are segmented and aligned, allowing the joint axes to be
estimated. The system supports both revolute and prismatic
joints. The learned kinematic structure can then be used [m@]
perform purposeful manipulation. The proposed approach
does not require prior knowledge of the object nor does
it make any assumption regarding planarity. Experimen{gz]
have shown its effectiveness on a range of environmental

conditions and various types of objects.
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