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Abstract— We present a method to recover complete 3D mod-
els of articulated objects. Structure-from-motion techniques are
used to capture 3D point cloud models of the object in two
different configurations. A novel combination of Procrustes
analysis and RANSAC facilitates a straightforward geometric
approach to recovering the joint axes, as well as classifying them
automatically as either revolute or prismatic. With the resulting
articulated model, a robotic system is able to manipulate the
object along its joint axes at a specified grasp point in order
to exercise its degrees of freedom. Because the models capture
all sides of the object, they areoccluded-aware, enabling the
robotic system to plan paths to parts of the object that are
not visible in the current view. Our algorithm does not require
prior knowledge of the object, nor does it make any assumptions
about the planarity of the object or scene. Experiments with
a PUMA 500 robotic arm demonstrate the effectiveness of
the approach on a variety of objects with both revolute and
prismatic joints.

I. INTRODUCTION

An important trend in robotics is that of autonomous
operation in unstructured and dynamic environments. As
robots move into unstructured environments such as homes,
schools, and workplaces, new approaches to sensing and
manipulation will be required to handle the greater variety
of objects encountered. For example, rather than expecting
the robot to have advanced knowledge of all objects that will
be encountered in the physical world, the ability to actively
learn about the scene will be crucial.

One problem that has recently caught the attention of
researchers is that of reconstructingarticulated objects [9],
[19], [20], [21]. These objects consist of rigid links connected
by one or more revolute or prismatic joints. A number of
everyday objects, such as laptop computers, staplers, scissors,
cabinet drawers, doors, and some cell phones fit such a
model. Even a desk or chair sliding on the floor can be
modeled, to some degree, by prismatic and revolute joints.

Existing work on articulated objects has been limited,
however, to reconstructing surfaces from a single viewpoint.
By tracking features in video, clustering those features, and
triangulating, the 3D coordinates of a number of points can
be estimated, along with the axis of rotation or sliding.
However, such results do not yield any information about the
back side of the object. Such an approach leaves the robot
helpless in any scenario in which it needs to manipulate parts
of the object that are not visible in the current view.

In this paper we introduce the termocclusion awareto
refer to a system that has knowledge about parts of the

object that are not currently visible. In grasping systems in
which the robot has a complete 3D CAD model of the object,
such knowledge has always been assumed. However, in an
interactive system in which the robot is learning about the
environment as it moves in space, such complete knowledge
is not usually available.

We describe an occlusion-aware reconstruction system that
is able to recover complete 3D models of articulated objects.
Images are captured of the object in two configurations, and
structure-from-motion techniques are used to reconstructtwo
3D models of the object. Procrustes analysis and RANSAC
sampling are then used to automatically segment the points
and align the links, from which a straightforward geometric
approach enables the estimation of the revolute or prismatic
axes. Once the model has been recovered, the robot can
align its coordinate system with that of the model and
then manipulate the object by exercising the degrees of
freedom captured by the model. Our approach makes no
planar assumptions, either on the shape of the object surface,
the motion of the object, or the viewpoint from the camera.
We show the results of the system on a variety of everyday
objects, demonstrating the effectiveness of the approach.

II. PREVIOUS WORK

One approach to articulated reconstruction is based upon
the factorization method [1], [22]. Exploiting the so-called
rank constraint, this method reveals the structure of mul-
tiple independently moving bodies by examining the block
diagonal structure of the measurement matrix consisting of
coordinates of tracked feature points. Building on this work,
Tresadern and Reid [23] add articulation constraints to the
formulation to decrease the rank, enabling the technique
to detect the articulated objects, determine their degreesof
freedom, and locate the joints. Because the factorization
method is limited to affine reconstruction, an additional self-
calibration step is needed to convert measurements to a
metric coordinate system.

Yan and Pollefeys [28] also investigate the subspace
properties of articulated motion in a factorization frame-
work. Their approach segments feature trajectories by local
sampling and spectral clustering, after which it builds the
kinematic chain as a minimum spanning tree of a graph
constructed from the segmented motion subspaces. Focused
on recovering human articulated motion, they derive rank
constraints for both revolute (1 DOF) and ball (2 DOF)



joints, assuming affine projection. Similar work by Ross et
al. [14] recovers the kinematic structure of the articulated
object as a skeleton using a probabilistic approach. Due to
the difficulty of tracking features through occlusion, their
video-based approach is also limited to single viewpoints,
as well as to affine projection. Other researchers focusing
on human motion aim to recover the joint parameters of the
human from video or motion capture [4], [7], [10], [13], [16].

In the robotics community, Katz et al. [9] track feature
points in video, then perform motion segmentation, and
finally 3D reconstruction. Assuming that the plane perpen-
dicular to the axis of rotation, or the plane in which sliding
occurs, is known, the revolute or prismatic axis is recovered.
Relying on feature points, this approach is also restricted
to single-view reconstruction. Other researchers have devel-
oped approaches to recover articulated motion using known
models [29] or revolute axes using planar surfaces [15].

In other robotics work, Sturm et al. [21] present an
approach to learn kinematic models based on observations
from a motion capture system that tracks the poses and
orientations of rigid parts. A mixture of parameterized and
parameter-free (Gaussian process) representations is used to
detect the connectivity of the rigid parts of the objects andto
find low-dimensional articulation models that best explainthe
given observation. In related work, Sturm et al. [20] present
an approach to learn articulation models of cabinet doors and
drawers without using artificial markers. Rectangles in depth
images obtained from a self-developed active stereo system
are detected using a sampling-based approach, assuming that
object surfaces are planar. Then the robot uses generative
object models to estimate the type of articulation (revolute
or prismatic). Once obtained, these articulated models are
used to interact with the environment [19].

III. OCCLUSION-AWARE RECONSTRUCTION

The purpose of this work is to automatically learn the
properties ofa priori unknown articulated objects in unstruc-
tured environments in order to facilitate further manipulation
of those objects. Figure 1 shows an overview of our system.
First, a set of images is captured by a camera of the object
from different viewpoints while the object remains stationary.
Structure-from-motion techniques are applied to the imagery
to build a 3D model of the object. In order to learn the
object’s kinematic structure, the configuration of the object
is interactively changed by exercising its degrees of freedom.

We assume that the capability of performing sufficient
exploratory interaction with the object to change its con-
figuration is present. In this way, the approach bears some
resemblance to interactive perception [8], [9], [25], [26],
[27], except that we allow a human to perform the interaction
due to the specific constraints of articulated motion in our
objects. Automatically planning the end effector motion
path for interactive perception in such situations remainsan
unsolved problem, because a preliminary model (at least)
is needed in order to interact with the object, but the
interaction is necessary to estimate the model. Therefore,
having the user perform the interaction enables us to escape

this difficult chicken-and-egg problem. If progress is made
toward developing such autonomous exploratory behavior in
the future, the reconstruction method described in this paper
would still apply.

Additional images are gathered of the object in the new
configuration, and structure-from-motion is again appliedto
obtain a different 3D reconstruction. These two 3D models
are segmented into the object’s constituent components (rigid
links) using the Procrustes analysis method combined with
a RANSAC sampling strategy. From this information, the
axis of each joint between neighboring links is found using
a geometric method utilizing an axis-angle representation.
Based on these models, the robot with eye-in-hand can
automatically compute the transformation between the object
and robot coordinate systems, enabling it to manipulate the
object around the articulation axis with a given grasp point.
Due to the complete 3D model, the robot can also interact
with occluded, unseen parts of the object, as shown in
Figure 2. We now describe these steps in detail.

Fig. 1. Overview of our system. Two 3D models of the object are
constructed using structure-from-motion techniques applied to two sets of
images of the object taken while the object is in two differentconfigurations.
After segmenting and aligning the links, the joint axes between neighboring
links are found. Manipulation of the object is then enabled by automatically
registering the object and robot coordinate frames.

Fig. 2. The PUMA 500 robotic arm manipulates a toy truck using
the truck’s kinematic model obtained by the occlusion-aware articulated
reconstruction procedure.

A. Object Model

We assume that the articulated object is composed of rigid
links connected by joints. The object can have any finite
number of links and joints, and the joints can be revolute
or prismatic. Figure 3 shows the two object models for
simplified cases of just two links and one joint. In the case



of a revolute joint, the configuration between the two links is
represented by the joint angle, while in the case of a prismatic
joint, the configuration is represented by the displacement.
In both cases, the axis is a ray in 3D space about or along
which the movement occurs. The links are represented as 3D
point clouds, with a coordinate system attached to each link
to enable its position and orientation to be described.

Fig. 3. LEFT: Two rigid links connected by a revolute joint. RIGHT: Two
rigid links connected by a prismatic joint.

B. Camera Calibration and Initial 3D Models

Given a set of images from different viewpoints of the
object in one configuration, SIFT and patch-based feature
points are detected and matched, and structure from motion
(SfM) algorithms are used to estimate the camera positions
and the 3D coordinates of points on the object. The same
procedure is applied to a set of images obtained of the
object in a different configuration to yield a second 3D
model, where in the second configuration all adjacent links
have moved relative to each other. Note that only two
configurations are needed, no matter how many links and
joints. The Bundler algorithm [17], [18] is used to calibrate
the camera and compute the camera locations. Patch-based
multi-view stereo (PMVS) [5], [6] is used to reconstruct
dense 3D oriented points, where each point has an associated
3D location, surface normal, and a set of visible images.
Figures 4 and 5 show the dense 3D reconstruction of a
toy truck in two different configurations. Notice that no
assumption is made regarding the planarity of the object
geometry or the uniformity of the background. There is no
constraint on the set of images, except that there must be
sufficient overlap in the fields of view in order to facilitate
feature matching across different views. In our experience,
successive camera viewpoints should differ by no more
than about 10 degrees, so that approximately 36 images
are needed to capture an accurate 360-degree model; more
images are needed to reconstruct the top or bottom of the
object.

C. Rigid Link Segmentation

Once the 3D models have been found, the next step
is to segment the 3D oriented points into the constituent
rigid components of the object. This involves automatically
determining the number of links, segmenting the data into
the different sets (one set per link), and determining which

Fig. 4. Four images (out of 112 captured) of a toy truck. The last row shows
the 3D reconstruction (two different views) obtained by thestructure-from-
motion procedure. An occlusion-aware model is produced in which points
on the back side, as well as the front, are recovered.

Fig. 5. Four images (out of 132 captured) after interacting with the
truck to change its configuration. The last row shows the 3D reconstruction
(two different views) by the structure-from-motion procedure. Notice the
significant change in lighting conditions.



links are connected. When there are just two links (as in
the case of the toy truck, which is composed of a cab
and bed), the latter step is trivial, but in more complicated
scenarios it is important to determine which links share a
joint. Segmentation is performed by clustering feature points
according to similarity transformations, using a combination
of SIFT, Procrustes, and RANSAC algorithms.

Feature points are found using the SIFT feature detector
[11] because of its invariance to image rotation, scaling, and
lighting changes. SIFT provides a local descriptor for each
feature in addition to the feature’s location. For every feature
point in the first configuration, a matching feature point in the
second configuration is sought. The matching feature point
is the one that yields the minimum Euclidean distance of
SIFT descriptors, if that distance is below a threshold. If
such a match is found, then the same matching algorithm
is run in reverse by switching the role of the images, and
matches are retained if they agree in both directions. These
2D matches are converted to 3D matches using the 3D model
points whose projection lies closest to the corresponding
SIFT features.

Given 3D feature correspondences between the two mod-
els, our aim is to segment the 3D model points according
to their similarity transformations. Similarity transforma-
tions include rotation, translation, and scale, the latterbeing
needed to handle the scale ambiguity in images. A RANSAC
sampling strategy [3] is adopted in which randomly selected
triplets of correspondences are used to compute putative
similarity transformations using Procrustes analysis. (For
Procrustes, we use the SVD algorithm [2].) Each resulting
transformation is used to align the 3D point clouds, yielding
an alignment error computed as the mean squared error
of the Euclidean coordinates of the corresponding points.
Within the RANSAC framework, this process is repeated
1000 times using different randomly selected triplets, and
the transformation that results in the smallest alignment
error is retained. Using this transformation, all model points
that transform to coordinates within some threshold of their
match are segmented as a new link. These points are then
removed from the models, and the entire process is repeated
until no more links can be found (i.e., the smallest alignment
error exceeds a threshold).

D. Classifying Joints

We assume that two rigid links are connected by either
a revolute joint or a prismatic joint. The type of joint
is automatically determined by examining the similarity
transformationR, t, andσ between the links determined by
Procrustes alignment, whereR is the rotation matrix,t is
the translation vector, andσ is the relative scaling between
the two models. Although one might be inclined to use the
translation vectort to distinguish between the two types of
joints, it is important to note thatt will not in general be
zero for a revolute joint. This is because the axis of the
coordinate system attached to the link does not necessary
(and usually will not) align with the axis of rotation. In other
words, although we are interested in rotation about the axis,

Procrustes computes the rotation about the origin of the coor-
dinate system, which is somewhat arbitrarily determined by
the structure-from-motion technique. While these rotations
themselves are identical, a non-zero translationt is needed
to compensate for the misalignment. As a result, we instead
determine the type of joint automatically by examining the
rotation matrixR: If R is close to the identity matrix, then
the joint is determined to be a prismatic joint; otherwise it
is a revolute joint. This procedure is repeated for each pair
of adjacent links.

E. Finding the Axes of Prismatic Joints

Locating the axis of a prismatic joint is straightforward.
Given two links connected by a prismatic axis, we assume
that the smaller link moves relative to the larger one, where
the size of the link is determined by the number of points
in the link. Therefore, the unit vectort/‖t‖ from the larger
link to the smaller link yields the direction of motion along
the prismatic joint, while the centroid of the points of the
smaller link provides the 3D coordinates of a point on the
axis.

F. Finding the Axes of Revolute Joints

Locating the axis of a revolute joint requires a bit more
care. In a two-dimensional plane, it is a simple matter to
show that any Euclidean transformation (rotation plus trans-
lation) can be represented as a rotation applied to translated
points. In other words,Rx+t = R(x−ω)+ω, wherex ∈ R

2

is a point in the plane, andω ∈ R
2 are the coordinates of the

axis of rotation. Thus, instead of rotating and then translating
a point, this alternate formulation involves shifting the origin
of the coordinate system, applying the rotation, then shifting
the origin back. As a result, the temporary originω about
which the rotation is applied specifies the axis of rotation.
Figure 6 shows the axis of rotation, indicated by a red dot,
estimated by our system for two different objects.

Fig. 6. Revolute axis estimation of pliers (left) and scissors (right) in 2D
found by our method. The red dot indicates the estimated axis ofrotation.

In 3D, the axis of a revolute joint is defined by a unit vector
u indicating the axis direction and one (somewhat arbitrary)
point on the axis. Using the axis-angle representation, the
rotation matrix between two corresponding links in the two
configurations is parameterized as a unit vector indicating
the direction of a free vector parallel to the axis of rotation
(the axis direction), and an angle describing the magnitude
of the rotation about the axis in the right-hand sense. After
aligning the 3D models, and segmenting into links, the



transformation between two corresponding links in the two
configurations is computed using Procrustes analysis. Given
the rotation matrix, the axis direction is found by noticing
that any vector parallel to the rotation axis must remain
(by definition) unchanged by the rotation, i.e.,Ru = u,
where u is a vector parallel to the rotation axis. From the
definition of eigenvalues and eigenvectors, this means that
the axis direction is the eigenvector ofR corresponding to
the eigenvalue of one.

Once the direction of the axisu has been found, the 3D
rotation about this axis can be thought of as a 2D rotation
in the plane perpendicular tou. To find the rotation plane,
a series of rotations are applied to two configurations such
that the z axis of a new coordinate system points in the
u direction and thexy plane specifies the plane in which
the rotation occurs. Then, similar to the 2D axis estimation
above, a point in the 2D plane indicating the axis is found,
which then yields a 3D point on the axis by appropriate
transformations. Together these two parameters (the axis
direction and a point on the axis) determine the axis.

IV. MANIPULATING OBJECTS

The resulting occlusion-aware 3D articulated model can
be used to enable a robot to manipulate the object. Two
capabilities are supported by such a model. First, given a
particular point on the object, the robot can move its end
effector to that position, even if the point is not visible in
the current view. This is one of the main advantages of
the occlusion-aware approach, namely, that the robot is not
limited only to the side of the object that is currently visible,
but rather that a full 3D model is available. Secondly, given
a particular grasp point, the robot can grab the object at that
point and move in such a way so as to exercise the articulated
joint.

The first step for manipulation is to estimate the transfor-
mation between the object model and the robot coordinate
frame. To make this a Euclidean transformation, we first
must overcome the scale ambiguity. The scale of the object
can be estimated in one of several ways. If the camera is
attached to the robot during capture time, then the known
positions of the end effector can be compared with the
estimated camera positions to determine the overall scale
of the scene. Alternatively, a separate step can compute the
projective distance from the camera to the table, which is
then compared with the known height of the table. A third
alternative is to simply use a known length on the object.

In any case, once the scale is known, the perspective n-
point (PNP) problem [12] can be solved for the Euclidean
transformation between the object coordinate system and the
camera coordinate system. The transformation between the
latter and the robot coordinate system can be computed off-
line by a standard hand-eye calibration procedure [24], with
the camera mounted on the robot. The PNP procedure begins
with 3D-2D point correspondences found by extracting and
matching SIFT features [11] in the image with 3D points
in the model. Using these correspondences, it minimizes
the reprojection error that is the sum of squared distances

between the observed projections and the projected points,
using the camera matrix and lens distortion coefficients
obtained from camera calibration.

V. EXPERIMENTAL RESULTS

We evaluated the performance of our approach on several
different objects, including scissors, pliers, a toy truck, a
Barrett robot hand, and a drawer. For our experiments, we
used a PUMA 500 robotic arm and a Logitech Quickcam
Pro 5000. Images of the object were gathered at multiple
positions, then the configuration of the object was changed,
and a new set of images was collected. The sets of images
were fed to our procedure, which automatically produced the
3D models, registered the models, segmented the links, and
estimated the axis or axes. The collecting of images can be
performed either off-line by a person, or on-line by the robot
with a scripted path.

We first demonstrate the proposed approach on one-axis
revolute objects lying on a table, with the revolute axis
perpendicular to the table top, as shown in Figure 7. Similar
to the work of Katz and Brock [8], our approach is able to
accurately estimate the axes of objects such as pliers or scis-
sors. Unlike [8], however, our approach makes no assumption
about the objects lying on the table, and it does not have prior
knowledge about the perpendicularity of the rotation axis
and the table top. Rather, the axis is automatically estimated
in 3D, thereby also estimating the rotation plane for future
manipulation of the object from arbitrary positions. In the
case of the pliers, the angle between the axis and the table
(which was estimated by fitting a plane to 58 points on the
table) differed from 90◦ by just 7.2◦.

The next experiment involved a Barrett robot hand, which
is a three-fingered gripper. The middle finger (F3) is fixed
with respect to the central base, while the other two fingers
(F1 andF2) rotate about the base symmetrically, i.e.θ1 =
θ2, as illustrated in Figure 8. Sets of images were captured
of the hand in the two configurations. Figure 9 shows the
two configurations, along with the 3D models reconstructed
by our system and the axis of rotation which was correctly
estimated. By fitting a plane to 20 points on the table, the
angle of the axis with respect to the table was measured to
be 89.5◦, which is just 0.5◦ from 90◦.

Another articulated object with two links and a single
revolute joint is the toy dump truck shown in Figure 10.
During the interaction, 112 images were captured of the first
configuration, and 132 images were captured of the second
configuration. The 3D reconstructions and estimated rotation
axis of the bed are shown in the figure. The angle of the axis
with respect to the table (obtained by fitting a plane to 20
points) was measured to be 1.4◦.

Our approach also works with articulated objects with
prismatic joints. In Figure 11, the first row shows a drawer of
a cabinet in two configurations. Since drawers of the cabinet
are plastic with transparency, we attached a small textured
piece of cardboard to the face of the first drawer in order
to reconstruct the 3D models. The second row of Figure 11
shows the 3D models corresponding to the first row with the



Fig. 7. Revolute axis estimation of pliers in 3D. Shown are images of
the pliers (out of 65 and 81, respectively) in two configurations (top row),
along with 3D reconstructions from different views with theoverlaid red
line indicating the estimated axis (bottom two rows). Results for scissors
are similar.

Fig. 8. The model of a Barrett robot hand with three fingers. Thefinger
in the middle (F3) is fixed with respect to the central base, while the other
two fingers (F1 andF2) move relative to the base in a symmetric manner
(θ1 = θ2).

Fig. 9. Two images of the Barrett hand (out of 87 and 87, respectively)
in two different configurations (top), and the 3D reconstructions with the
estimated axis overlaid (red line, bottom).

Fig. 10. Axis estimation of the toy dump truck. TOP: images (out of 112
and 132, respectively) of the two configurations of the truck. BOTTOM: 3D
reconstructions with the estimated axis (red line).

Fig. 11. Axis estimation of the drawer of the cabinet. The firstrow shows
two images (out of 115 and 83, respectively) of the two configurations, and
the second row shows 3D reconstructions with the estimated axis (red line).

estimated axis indicated by a red line. We can see that the
frame and first drawer of the cabinet were well reconstructed,
and that the prismatic axis was found correctly. The angle of
the axis with respect to a horizontal bar on the side of the
cabinet was found to be 3.4◦.

We have also experimented with objects having multiple
joints. Figure 12 shows an example of a scraper truck with
two revolute joints, showing that the estimated axes are
accurate. The angle between the estimated axes was 7.6◦, but
some of this deviation is due not to error from the algorithm
but rather to the pliability of the plastic toy resulting from im-
precise manufacturing. Note that the difficulty of automatic
segmentation increases significantly as the number of joints
increases, particularly with untextured objects. The restof
the algorithm, however, is largely unaffected by the number
of joints.

VI. CONCLUSION

In this paper, we have proposed an approach to extract
the 3D surface and kinematic structure of articulated objects.
Multiple pictures are taken of the object in two different con-
figurations, and 3D models are reconstructed using structure-



Fig. 12. Occlusion-aware reconstruction of an articulatedobject with
multiple axes. For the two configurations, 111 and 134 images, respectively,
were captured.

from-motion techniques based on images captured by a sin-
gle camera. From these models, the rigid links of the object
are segmented and aligned, allowing the joint axes to be
estimated. The system supports both revolute and prismatic
joints. The learned kinematic structure can then be used to
perform purposeful manipulation. The proposed approach
does not require prior knowledge of the object nor does
it make any assumption regarding planarity. Experiments
have shown its effectiveness on a range of environmental
conditions and various types of objects.

VII. ACKNOWLEDGMENTS

This work was supported by NSF grant IIS-1017007.

REFERENCES

[1] J. Costeira and T. Kanade. A multi-body factorization method for
motion analysis. InProceedings of the International Conference on
Computer Vision, pages 1071–1076, 1995.

[2] D. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-D rigid body
transformations: A comparison of four major algorithms.Machine
Vision and Applications, 9(5-6):272–290, Mar. 1997.

[3] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysisand
automated cartography.Communications of the ACM, 24(6):381–395,
1981.

[4] D. A. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, and D. Ramanan.
Computational studies of human motion: Part 1, Tracking and motion
synthesis.Foundations and Trends in Computer Graphics and Vision,
1(2/3), 2006.

[5] Y. Furukawa and J. Ponce, 2007. PMVS,
http://www.cs.washington.edu/homes/furukawa/research/pmvs.

[6] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view
stereopsis. InProceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2007.

[7] P. Guan, A. Weiss, A. O. B̆alan, and M. J. Black. Estimating
human shape and pose from a single image. InProceedings of the
International Conference on Computer Vision, 2009.

[8] D. Katz and O. Brock. Manipulating articulated objects with inter-
active perception. InProceedings of the International Conference on
Robotics and Automation, pages 272–277, May 2008.

[9] D. Katz, A. Orthey, and O. Brock. Interactive perceptionof articulated
objects. In12th International Symposium on Experimental Robotics
(ISER), Dec. 2010.

[10] A. G. Kirk, J. F. O’Brien, and D. A. Forsyth. Skeletal parameter
estimation from optical motion capture data. InProceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2005.

[11] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[12] F. Moreno-Noguer, V. Lepetit, and P. Fua. Accurate non-iterative O(n)
solution to the PnP problem. InProceedings of the International
Conference on Computer Vision, Oct. 2007.

[13] J. F. O’Brien, J. Robert E. Bodenheimer, G. J. Brostow, and J. K.
Hodgins. Automatic joint parameter estimation from magnetic motion
capture data. InProceedings of Graphics Interface, 2000.

[14] D. A. Ross, D. Tarlow, and R. S. Zemel. Learning articulated structure
and motion.International Journal of Computer Vision, 88(2):214–237,
Mar. 2010.

[15] D. Sinclair, L. Paletta, and A. Pinz. Euclidean structure recovery
through articulated motion. InIn Proc. 10th Scandinavian Conference
on Image Analysis, 1997.

[16] C. Sminchisescu and B. Triggs. Estimating articulated human motion
with covariance scaled sampling.International Journal of Robotics
Research, 22(6):371–393, 2003.

[17] N. Snavely, 2006. Bundler: SfM for unordered image collections,
http://phototour.cs.washington.edu/bundler.

[18] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring
image collections in 3D.ACM Transactions on Graphics (Proceedings
of SIGGRAPH), 25(3):835–846, 2006.

[19] J. Sturm, A. Jain, C. Stachniss, C. Kemp, and W. Burgard. Operating
articulated objects based on experience. InProceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.

[20] J. Sturm, K. Konolige, C. Stachniss, and W. Burgard. Vision-based
detection for learning articulation models of cabinet doorsand drawers
in household environments. InProceedings of the International
Conference on Robotics and Automation, 2010.

[21] J. Sturm, C. Stachniss, V. Pradeep, C. Plagemann, K. Konolige,
and W. Burgard. Learning kinematic models for articulated objects.
In Proceedings of the International Joint Conference on Artificial
Intelligence, 2009.

[22] C. Tomasi and T. Kanade. Shape and motion from image streams
under orthography: A factorization method.International Journal of
Computer Vision, 9(2):137–154, 1992.

[23] P. Tresadern and I. Reid. Articulated structure from motion by
factorization. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages 1110–1115,
2005.

[24] R. Y. Tsai and R. K. Lenz. A new technique for fully autonomous
and efficient 3D robotics hand/eye calibration.IEEE Transactions on
Robotics and Automation, 5(3):345–358, June 1989.

[25] B. Willimon, S. Birchfield, and I. Walker. Rigid and non-rigid
classification using interactive perception. InProceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1728–1733, 2010.

[26] B. Willimon, S. Birchfield, and I. Walker. Classificationof clothing
using interactive perception. InInternational Conf. on Robotics and
Automation (ICRA), pages 1862–1868, 2011.

[27] B. Willimon, S. Birchfield, and I. Walker. Model for unfolding
laundry using interactive perception. InProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2011.

[28] J. Yan and M. Pollefeys. A factorization-based approach for articulated
nonrigid shape, motion, and kinematic chain recovery from video.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(5):865–877, May 2008.

[29] X. Zhang, Y. Liu, and T. S. Huang. Motion analysis of articulated
objects from monocular images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(4):625–636, Apr. 2006.


