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ABSTRACT

Classical multidimensional scaling (MDS) is a simple,
global, non-iterative technique for determining the lo-
cations of microphones given their interpoint distances,
even when all such distances are not available. We ex-
tend this technique by showing how it can be used with
a calibration target consisting of synchronized sound
sources, which facilitates automatic calibration of large
arrays when such a target is available. We also evaluate
the sensitivity of the algorithm to the size and location
of the target, as well as to the basis points in general, on
several different microphone array configurations. Sim-
ulations and experiments demonstrate the accuracy of
the algorithm for practical scenarios, yielding errors on
the order of 1 cm.
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1. INTRODUCTION

Applications using microphone arrays, such as acoustic
localization and beamforming, require the locations of
the microphones to be known. Determining these lo-
cations is the problem of geometric microphone array
calibration. Traditional methods of calibrating micro-
phone arrays have involved expensive calibration tar-
gets and/or nonlinear optimization techniques that are
subject to local minima [7, 1].

Recently it was shown [2] that the locations of the
microphones can be computed using a simple, global,
non-iterative technique known as classical multidimen-
sional scaling (MDS) [5]. Classical MDS is an algorithm
which, given noisy distances between a set of points in
a Euclidean space, estimates the coordinates of those
points. The algorithm is robust to measurement noise,
yielding accuracy on the order of the smallest audible
wavelength[2]. If measuring all the inter-microphone
distances is impractical (e.g., with a large microphone
arrays [8]), an alternative is to apply classical MDS to
the distances between each microphone and a set of ba-
sis points [2].

In this paper we extend the algorithm to use a cal-
ibration target consisting of four sound sources. We
measure the sensitivity of the algorithm to the size and
position of the target on several different microphone ar-
ray configurations. In addition, we measure its sensitiv-
ity to the choice of basis points in general. Simulations
and experiments verify the accuracy of the algorithm for
practical applications, with errors on the order of 1 cm.

To compute the locations of n microphones in a p-
dimensional space from their pairwise distances δij ,

1. Construct the squared-distance matrix D whose
entries are δ2

ij .

2. Compute the inner product matrix B = − 1

2
JDJ ,

where J = I − 1

n
11T is the double-centering ma-

trix and 1 is a vector of all ones.
3. Decompose B as B = V ΛV T , where Λ =

diag(λ1, . . . , λn), the diagonal matrix of eigenval-
ues of B, and V = [v1, . . . ,vn], the matrix of cor-
responding unit eigenvectors. Sort the eigenvalues
in non-increasing order: λ1 ≥ . . . ≥ λn ≥ 0.

4. Extract the first p eigenvalues Λp =
diag(λ1, . . . , λp) and corresponding eigenvec-
tors Vp = [v1, . . . ,vp].

5. The microphone coordinates are now located in

the n × p matrix X = [x1, . . . ,xn]
T

= VpΛ
1

2

p .

Figure 1: Classical multidimensional scaling algorithm.

2. CLASSICAL MULTIDIMENSIONAL
SCALING

Suppose we have n microphones in a p-dimensional
space (usually p = 3) and have measured the distance

δij =
√

(xi − xj)T (xi − xj) between each pair of mi-
crophones i and j. The classical multidimensional scal-
ing algorithm, given in Figure 1, computes the opti-
mal locations of the microphones, in the sense that
∑n

i=1

∑n

j=1
(δij − δ̂ij)

2 is minimized.

If measuring all the pairwise distances is prohibitive,
an alternative is to use a set of p + 1 basis points [2].
These basis points may be a subset of the microphone lo-
cations or any other points in the space (e.g., the sound
source locations on a calibration target). The algorithm
works as follows. First, the coordinates of the basis
points are computed from their pairwise distances using
the equations in Figure 2. Then, those equations are
used to compute preliminary coordinates for each mi-
crophone given the distances between the basis points
and the microphone. These preliminary coordinates are
used to fill the squared distance matrix D which is then
fed to the classical MDS algorithm.

For brevity we will refer to the classical MDS algo-
rithm (Figure 1) as Aoand the version using basis points
(Figures 1 and 2) as Ab.



In three dimensions, the coordinates of the four basis
points are given by

A :

(

−

1

2
δAB , 0, 0

)

B :

(

1

2
δAB, 0, 0

)

C :

(

xC ,

√

1

2
δ2

AC −

1

4
δ2

AB +
1

2
δ2

BC − x2

C , 0

)

D :

(

xD, yD,

√

1

2
δ2

AD −

1

4
δ2

AB +
1

2
δ2

BD − x2

D − y2

D

)

.

The coordinates of an arbitrary point Q can be ob-
tained by its distance to the basis points:

xQ =
δ2

AQ − δ2

BQ

2δAB

yQ =
δ2

AC − δ2

AB + δ2

BC + δ2

AQ + δ2

BQ − 2δ2

CQ − 4xCxQ

4yC

zQ =
1

4zD

(

δ
2

AD + δ
2

BD + δ
2

AQ + δ
2

BQ − δ
2

AB

−2δ
2

DQ − 4xDxQ − 4yDyQ

)

.

Note that xC , xD, and yD are found by substituting
C or D for Q.

Figure 2: Equations for computing and using basis point
coordinates.

3. SENSITIVITY ANALYSIS

In this section we evaluate the sensitivity of Ab to the
choice of basis points.

3.1 Computation of RMS Error

In these simulations, the ground truth microphone loca-
tions were stored in an n× p matrix Y , while the result
of the algorithm was stored in an n×p matrix X . Since
the solution has an arbitrary translation, rotation, and
reflection, we measured the root-mean-square (RMS) er-

ror in the solution as
√

R2/n, where

R2 =

n
∑

i=1

(AT xi − yi)
T (AT xi − yi),

yT

i
is the ith row of Y , xT

i
is the ith row of X , and A is

the normalized orthogonal matrix that best aligns the
points by rotating and reflecting them [2, 5]:

A = (XT Y Y T X)
1

2 (Y T X)−1.

Translation was handled by first shifting all the points
so that their centroid coincided with the origin.

3.2 Array Configurations

For our analysis, we considered two microphone ar-
ray configurations Ω1 and Ω2 similar to those used by
Brandstein et al. [3] and Checka et al. [4], respectively,
shown in Figure 3. In addition to the nine microphones
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Figure 3: The two microphone array configurations.

contained in the arrays of those papers (shown as dark
circles in the figure), we inserted the additional micro-
phones shown as hollow circles, bringing the total num-
ber of microphones per configuration to 25. The original
9-microphone configurations are denoted by Ω′

1 and Ω′

2.

With the 9 microphones of Ω′

1 or Ω′

2, Ao requires
n(n − 1)/2 = 36 pairwise distances while Ab requires
p(p + 1)/2 + (p + 1)(n− p− 1) = 26. In such a case, Ab

does not provide much savings in terms of measurement
labor, and Ao is probably the method of choice. In con-
trast, with the 25 microphones of Ω1 or Ω2, Ab requires
just 90 distances compared with 300 distances for Ao —
a savings of 70%.

3.3 Choice of Basis Points

As explained in [2], the robustness of the algorithm Ab

increases with the volume enclosed by the basis points
(or the area in the case of a planar array). To use Ab

with a subset of the inter-microphone distances, then,
one should select as basis points the microphones whose
enclosed volume (or area) is maximized.

To test the sensitivity of the algorithm to the choice
of basis points, we measured the accuracy of Ab using
all possible

(

n
p+1

)

basis sets.1 We perturbed the distance

measurements by adding a zero-mean additive Gaus-
sian noise with σ = 1 cm. Then we ran Ab on those
measurements, averaging over 100 trials, obtaining the
results shown in Table 1. For both configurations the
best choice of basis points yielded an accuracy much
smaller than the smallest audible wavelength (approx-
imately 1.6 cm). Because of the additional constraint
afforded by the reduced dimensionality of the planar ar-
ray Ω2, however, its accuracy is greater than that of the
three-dimensional array Ω1.

Manually selecting good basis points for common mi-
crophone array configurations is not difficult. Looking
at Figure 3, the microphones 〈1, 5, 23, 25〉 (or other sym-
metric choices) clearly maximize the volume of Ω1. Sim-
ilarly, with Ω2 the microphones 〈1, 5, 23〉 maximize the
area. The error for these two choices are 0.3 cm and 0.2
cm, respectively, which are statistically the same as the
best results.

1But we excluded sets whose basis points A, B, and C were
collinear or A, B, C, and D were coplanar (for Ω1), which would
cause a divide-by-zero error in the equations of Figure 2.



configuration mic indices RMS error (cm)
Ω1 〈1, 5, 22, 24〉 0.3

〈1, 3, 5, 19〉 0.3
〈13, 17, 22, 24〉 5.6
〈12, 14, 17, 19〉 5.9

Ω2 〈4, 16, 24〉 0.2
〈2, 20, 21〉 0.2
〈3, 7, 9〉 3.9

〈5, 13, 14〉 4.0

Table 1: The two best and two worst unique basis sets
for Ω1 and Ω2. Note that other basis sets have similar
errors because of symmetry.

4. USING A CALIBRATION TARGET

Up to now we have assumed that the basis points are a
subset of the microphones and that the interpoint dis-
tances are measured with a tape measure. Since Ab

works for any basis points in the space, however, an
alternative is to use a calibration target consisting of
four speakers rigidly attached to one another, with the
four speakers being the basis points. By measuring the
p(p + 1)/2 = 6 inter-speaker distances with a tape mea-
sure and the n(p + 1) distances between microphones
and speakers using time-delay estimation, Ab yields a
simple, non-iterative technique that globally computes
the microphone locations. Other well-known techniques,
such as the simplex method or stochastic region contrac-
tion (SRC) [7, 1], solve a nonlinear equation by iterating
around an initial solution and thus are subject to local
minima.

Measuring the distances between speakers and mi-
crophones requires that we have access to the reference
signal emitted by each speaker, synchronized with the
signals received by the microphones. One way to achieve
this prerequisite is to synchronize the speaker emission
with the microphone digitizers (e.g., by modulating a
radio-frequency (RF) signal that travels instantaneously
compared with the sound wave [6]) and to use the wave-
form sent to the speaker as the reference. Another way
is to place an extra microphone as close as possible
to each speaker to capture the sound as soon as it is
emitted. This extra microphone, whose digitizer must
be synchronized with the other microphones’ digitizers,
provides the reference signal. A third alternative is to
synchronize the signals . Either way, time-delay estima-
tion cross-correlates the reference signal with the signals
received by the microphones to estimate the time it took
sound to travel from the source to the microphone. For
a good description of the difficulties and details involved
in using a calibration target, including the complications
arising from changes in the speed of sound, please con-
sult Sachar et al. [7].

For our purposes we assume that these problems are
solved, and that the distances between speakers and mi-
crophones can be measured. In this subsection we wish
to evaluate the sensitivity of Ab to the location and size
of the calibration target and to gain insight regarding
the design choice for these parameters. In order to max-
imize the volume enclosed by the basis points, the shape
of the calibration target was chosen to be a right, regu-
lar, triangle-based pyramid.
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Figure 4: RMS error for the two configurations versus
y-coordinate (top), x-coordinate (middle), and size of
calibration target (bottom).

For the configurations Ω1 and Ω′

1, we placed the
pyramidal target in the center of a 5 × 5 × 5 m room,
resting on the floor, so that the coordinates of the center
of its base were (2.5, 0, 2.5) m. First we uniformly scaled
the target, varying the pyramidal edge length from 0.1
m to 5 m in increments of 0.1 m. Then, setting the
length to 1 m, we varied the target’s x-coordinate, slid-
ing the target from one end of the room to the other.
Finally, setting the x-coordinate to 2.5 m, we varied the
y-coordinate in a similar manner. This entire procedure
was then repeated for the configurations Ω2 and Ω′

2. In
all simulations we required the calibration target to re-
main inside the room, and all distance measurements
were corrupted by zero-mean Gaussian noise with σ = 1
cm.

Several conclusions can be drawn from these results,
which are displayed in Figure 4. As expected, the error
decreased with the size of the calibration target, reach-
ing the order of the smallest audible wavelength (1.6 cm)
when the pyramidal edge was about 1 m. Position had
less effect on the results, but in all cases the error de-
creased as the target moved closer to the microphone ar-
ray. Not surprisingly, the error of the three-dimensional
array Ω1 was less than that of the planar array Ω2 be-
cause the computation in both cases was performed in
3D. Most importantly, with a sufficiently-sized target
the errors ranged from approximately 1 to 2 cm (stan-
dard deviation between 0.4 and 0.6 cm when pyramidal
edge length is at least 1 m), which validates the accuracy
of this technique for practical acoustic applications.
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Figure 5: Two Ω1s placed at opposite corners of a room,
along with the error vs. the size of the calibration target.

5. DETACHED MICROPHONES

Although the simulations of the previous section vali-
date the accuracy of the algorithm and provide insight
as to the effect that various parameters have on the out-
come, the arrays Ω1 and Ω2 themselves are simplistic ex-
amples. In practice the microphone coordinates of such
rectilinear arrays would be known at the time the array
was constructed. Nevertheless, the results of these sim-
ulations are applicable to similarly-sized and similarly-
shaped arrays which are not constructed so carefully,
for example, a distributed set of laptop computers each
containing a built-in microphone, as in [6].

More generally, when microphones are not rigidly
connected to one another, a calibration technique is nec-
essary because their locations are not known a priori.
For example, even though the microphone locations may
be known within a rigidly-attached array, when two or
more such arrays are placed in a room the locations of
all the microphones are not known with respect to a
single coordinate system. In Figure 5 we have placed
two arrays of Ω1 at opposite corners of the room and
varied the size and location of the calibration target as
before, using Ab to compute the microphone locations.2

The results are similar, though the drop-off due to size
is sharper because of the increased proximity of the tar-
get to both arrays as the size increased. As expected,
the error was minimum with the target in the middle of
the room, although the figures for x- and y-coordinates
were omitted from this paper due to space constraints.

This work was originally motivated by the real-world
scenario shown in Figure 6. Eight microphones were lo-
cated in a semi-rectangular conference room, a pair of
microphones in each corner of the room. Although the
intra-pair distance was known a priori to be 15 cm, the
distances between pairs of microphones were unknown.
Measuring the 24 inter-microphone distances (in addi-
tion to the a priori distances) and using Ao yielded the
results shown in the figure. The RMS difference between
the results and the manual measurements was 2.6 cm.

6. CONCLUSION

We have shown how to apply the MDS algorithm to
a calibration target with four sound sources, thus facili-
tating automatic calibration when such a target is avail-
able. A large target (≥ 1 m edge length) is necessary
to achieve good results, but the algorithm is fairly in-

2Because real rooms are not constructed with perfectly straight
lines, the problem in reality is harder than it appears in the figure.
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Figure 6: The results of a real experiment. Microphone
locations computed by the algorithm Ao (x), and those
computed by measuring by hand (o).

sensitive to the target’s position. Choosing basis points
in general on a microphone array is not difficult, with
excellent results possible by manually selecting points
that maximize the enclosed volume (or area, in the case
of a planar array). Simulations and experiments have
demonstrated accuracy on the order of 1 cm, which ver-
ifies the algorithm’s applicability to practical scenarios.
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