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Abstract
This paper proposes several adjustments to the ISO 12233

slanted edge algorithm for estimating camera MTF. First, the
Ridler-Calvard binary image segmentation method is used to find
the line. Secondly, total least squares, rather than ordinary least
squares, is used to compute the line parameters. Finally, the pixel
values are projected in the reverse direction from the 1D array to
the 2D image, rather than from the 2D image to the 1D array. To-
gether, these changes yield an algorithm that exhibits significantly
less variation than existing techniques when applied to real im-
ages. In particular, the proposed algorithm is largely invariant to
the rotation angle of the edge as well as to the size of the image
crop.

Introduction
The modulation transfer function (MTF) is a widely used

measure for the sharpness of an imaging system. High values of
the MTF indicate a system that generates sharp images, whereas
low values of the MTF indicate a system that generates blurry im-
ages. In digital imaging systems, the MTF is usually estimated
by the spatial frequency response (SFR), which is the normalized
modulus of the Fourier transform of a line spread function (LSF).
For the purpose of this paper, the terms MTF and SFR will be
used interchangeably.1

A standard technique for measuring MTF is known as the
“slanted edge” approach, for which the algorithm was standard-
ized with the publication of ISO 12233 more than a decade ago.
Since then, numerous open-source and proprietary implementa-
tions of the algorithm have appeared, which are widely used to
measure the sharpness of digital cameras. Such algorithms are
used, for example, to declare a camera “Skype certified,” which
requires as one of its tests that the MTF30 value (the frequency at
which the MTF reaches 30% of its zero-frequency value) exceed
a certain threshold.

Calculating MTF
The slanted-edge algorithm standardized in ISO 12233 in-

volves the following ten steps [4]:

1. Determine a region of interest (ROI) in the image contain-
ing a single step edge. (This step, unlike the others, can be
performed either manually or automatically.)

2. Linearize the pixel data by undoing the opto-electronic con-
version function (OECF), also known as gamma compres-
sion. (Undoing gamma compression is called gamma ex-
pansion.)

1If the input edge cannot be considered an ideal edge, then the SFR
must first be divided—frequency by frequency—by the corresponding in-
put edge modulation to produce the MTF [5, 7]; this detail, however, is
generally not as important with cameras as it is with scanners.

3. In the case of a color camera, calculate a weighted sum of
the red, green, and blue values to yield a luminance value for
each pixel; alternatively, perform the remaining steps sepa-
rately for each color channel. (Skip this step in the case of a
monochrome camera.)

4. Find the coordinates of points along the intensity step edge.
5. Fit the parameters of a line to the coordinates.
6. Project the 2D array of pixel values onto a 1D array known

as the edge spread function (ESF).
7. Differentiate the ESF by convolving with an FIR filter to

yield the line spread function (LSF).
8. Apply a Hamming window function to reduce the effects of

noise far from the edge.
9. Compute the discrete Fourier transform (DFT) of the LSF.

10. The magnitude of the DFT yields an estimate of the MTF.

In this paper, a new method for calculating MTF is proposed.
This method follows these same ten steps but differs in how sev-
eral of the steps are implemented. More specifically, the proposed
technique is identical to the standard technique regarding Steps 1–
3 and 7–10. The middle steps, however, differ as follows:

• Step 4, Find coordinates of points.
Standard technique: Compute the centroid of the derivative
along the rows of the image.
Proposed technique: Apply the Ridler-Calvard binary im-
age segmentation algorithm [1] to the pixels in the ROI to
segment the image into the light and dark regions. This
yields the coordinates of points that straddle the light and
dark regions.

• Step 5, Fit line parameters.
Standard technique: Calculate the slope of the line using
ordinary least squares.
Proposed technique: Perform total least squares to calculate
the line that best fits the coordinates.

• Step 6, Project from 2D to 1D.
Standard technique: Forward project the 2D pixel values
onto the 1D oversampled array.
Proposed technique: For each cell in a 1D oversampled ar-
ray perpendicular to the line, calculate the average linearized
pixel value by reverse projecting into the interpolated 2D ar-
ray.

In contrast to the standard technique, which is sensitive to
both the slant of the edge and the number of pixels in the ROI, the
proposed technique is largely insensitive to both the edge orienta-
tion and the number of pixels in the ROI. It also requires simpler
calculations, since there is no possibility of empty bins, and no
need to use a certain number of image rows (see below). Of the
three changes listed above, the last one (Step 6) is the most cru-
cial, as it allows more reliable construction of the 1D array from
the 2D array by eliminating the high-frequency noise introduced



Figure 1. The goal of projection (Step 6) is to construct a 1D array (bottom)

from a 2D array of pixels (top). (Note that the overlaid squares are shown

here large for illustrative purposes; in reality each is the size of a single pixel.)

by forward projection. This results in a more stable and reliable
estimate of the MTF.

For completeness, it should be mentioned that the ISO 12233
standard imposes additional details on the performing of several
of the ten steps above: 1) the edge must be approximately ver-
tical (as opposed to approximately horizontal—if not, the image
is first rotated by 90 degrees); 2) The edge must be slanted, typ-
ically about 5 degrees; 3) the coordinates in Step 4 are found by
computing the centroid of the derivative of each row, using a con-
volution kernel of

[
0.5−0.5

]
; 4) in Step 5, ordinary least squares

is used to calculate the line parameters;2 5) in Step 6, the number
of rows used is truncated to ensure that each phase (of the edge
position relative to the horizontal center of the pixel) occurs in
the same number of rows; 6) in Step 6, the pixel values of each
row are shifted according to the line parameters and placed into
an oversampled LSF using four bins per pixel (4X oversampling).

The proposed method differs regarding these six details: 1)
the edge can be any orientation; 2) Although it is best for the edge
to be slanted, it is not strictly speaking necessary; 3) the coordi-
nates in Step 4 are found using binary image segmentation; 4) in
Step 5, total least squares is used instead of ordinary least squares;
5) truncation is no longer needed; 6) in Step 6, the oversampled
LSF is created by reverse projection from the 1D array to the 2D
array, as opposed to forward projection from the 2D array to the
1D array. However, in this last step, 4X oversampling is still used.

Forward Versus Reverse Projection
To better understand the difference between forward and re-

verse projection in Step 6 of the procedure, consider the slanted
edge shown in Figure 1. The superimposed grid represents the
pixels in the 2D image, while the array below the image represents
the 1D oversampled signal obtained by projecting the pixels. To
avoid clutter, this particular illustration shows 2X oversampling
(which can be seen from the fact that there are two samples in
the 1D array for every column in the image), rather than the more
common 4X oversampling used in practice. The goal in Step 6 is
to produce this 1D array from the 2D array.

The two approaches to projection are illustrated in Figure 2.
Forward projection loops through the pixels in the 2D image and,
for each pixel, updates the value in the corresponding cell in the
1D array by adding the value of the pixel. A separate 1D ar-
ray keeps track of how many pixels have contributed to each cell,
so that, when all pixels have been considered, the average value

2While not specifically stated by the standard, the reference imple-
mentation listed in the appendix of the standard does use ordinary least
squares. To the author’s knowledge, every existing implementation fol-
lows this precedent.

of each cell can be computed. In forward projection, the 1D ar-
ray is aligned with the rows of the image. In contrast, reverse
projection loops through the cells in the 1D array and, for each
cell, computes its value as the average of the interpolated values
at equally-spaced locations in the 2D image along a line perpen-
dicular to the 1D array, which itself is oriented perpendicular to
the intensity edge. Bicubic interpolation is used in this paper, al-
though bilinear interpolation is an alternative.

An example of the two approaches applied to an actual
slanted edge is presented in Figure 3. Both implementations are
identical except for the projection method. The steps are as fol-
lows: gamma expansion using the Rec. 709 nonlinear transfer
function, Ridler-Calvard binary image segmentation, total least
squares to compute the line parameters, projection (either forward
or reverse) with 4X oversampling, differentiation using a con-
volution kernel of

[
1 −1

]
, Discrete Fourier Transform (DFT),

and retaining only the magnitude of the DFT of the positive fre-
quencies to yield the MTF. Forward projection truncates the num-
ber of rows (in this case, to 56) to ensure an integral number of
phase shifts, whereas reverse projection uses all the rows (in this
case, 62). Note that the MTF30 (the frequency that yields the
MTF value of 0.3) is significantly different between the two ap-
proaches: 0.71 cycles per pixel for forward projection, versus 0.53
cycles per pixel for reverse projection. Similarly, the MTF50 (the
frequency that yields the MTF value of 0.5) is different: 0.56 ver-
sus 0.47.

The reason the MTF values are higher for forward projec-
tion than they are for reverse projection appears to be that the
former introduces extraneous high frequencies into the computa-
tion. To see this phenomenon, Figure 4 shows zoomed-in portions
of the projections and windowed derivatives, where noise with a
frequency of 0.25 cycles per sample3 (or, equivalently, a period
of 4 samples) is evident. The cause of this noise is the inherent
periodicity in the 4X oversampling procedure of forward projec-
tion. Indeed, when 2X oversampling is used instead, the noise
from forward projection has a frequency of 0.5 cycles per sample
(period of 2 samples), as shown in Figure 5.

The MTF30 and MTF50 values for this edge for different
amounts of oversampling are as follows:

forward reverse
MTF30 MTF50 MTF30 MTF50

1X 0.46 0.42 0.45 0.42
2X 0.59 0.53 0.51 0.46
4X 0.71 0.56 0.53 0.47
8X 0.69 0.57 0.54 0.48

From this table, note that reverse projection yields fairly stable
values for any amount of oversampling. In contrast, the noise in
forward projection increases as the amount of oversampling in-
creases, which in turns raises the MTF curve. The lowest noise
level is achieved with 1X oversampling, but the benefits of over-
sampling are lost as well. With 8X oversampling, the values from
forward projection are particularly unreliable since some of the
bins in the 1D array have zero values.

The high-frequency noise appears to be the result of period-
icity in the mapping from the 2D pixel coordinates to the 1D array

3“Sample” here refers to an element in the 1D array.



forward projection reverse projection
Figure 2. Forward versus reverse projection. Forward projection (left) loops through the pixels in the 2D image, adding their values to the corresponding cells

in the 1D array in order to average them. Reverse projection (right) loops through the cells in the 1D array, computing an average of interpolated values at

equally-spaced locations in the 2D image.

Forward projection. MTF30= 0.71, MTF50= 0.56 cycles per pixel.

Reverse projection. MTF30= 0.53, MTF50= 0.47 cycles per pixel.
Figure 3. Forward projection (top) compared with reverse projection (bottom) with 4X oversampling on an actual 33×62 JPEG-compressed slanted edge. From

left to right: Original image and result of Ridler-Calvard segmentation with boundary points overlaid (red circles), image after gamma expansion with fitted line

overlaid (solid red) and projection line (dashed green), 1D projection (either forward or reverse), windowed derivative (solid) with Hamming window (dashed),

and MTF curve with MTF30 and MTF50 (dashed red lines).

Figure 4. Zoomed-in plots of the 1D projection (left two columns) and the windowed derivative (right two columns) of the previous figure for both forward (top)

and reverse (bottom) projections. Notice the high-frequency noise present in the former signals that is absent from the latter signals. This noise has a frequency

of 0.25 cycles per sample, or equivalently, a period of 4 samples. This high-frequency noise artificially inflates the MTF curve computed by forward projection.



Figure 5. Zoomed-in plots of forward projection using 2X oversampling. The noise from forward projection has a frequency of 0.5 cycles per sample, or a

period of 2 samples.

Figure 6. Depiction showing which pixels in the 2D image contribute to

which samples in the 1D array for 8 samples near the center of the 1D array

(4X oversampling). Each color represents a different sample index. The

repetition between indices spaced 4 samples apart is evident: Navy blue

(1st sample) always appears on the same row as green (5th sample), and so

on. See text for details.

indices. Figure 6 shows the pixels associated with eight consec-
utive samples near the center of the 1D array, using 4X oversam-
pling. Each sample is assigned a color, and the pixels that con-
tribute to that sample are displayed with that color. (White pixels
do not contribute to these eight samples.) Note that the 1st (navy
blue) and 5th (green) samples receive contributions from the same
rows, and similarly for the 2nd (bright blue) and 6th (yellow) sam-
ples, as well as the 3rd (royal blue) and 7th (orange) samples, and
the 4th (teal) and 8th (red) samples. In other words, as one tra-
verses the 1D array, one discovers that the contributing rows are
repeated every 4th sample, which corresponds to the 4-sample
period of the high-frequency noise. Similarly, with 2X oversam-
pling, the rows are repeated every 2nd sample. These repetitions
appear to resonate with the periodicity of the JPEG compression
to introduce the high-frequency noise. As an aside, note that the
edge in these experiments is at an angle of 9.1◦, so the slope is
6.2, which can be seen in the figure as the step size between the
multicolored foreground and white background.

Implementation Details
Now that we have analyzed the characteristics of forward

and reverse projections, in this section we describe several other
details of the implementation. Step 4 applies the Ridler-Calvard

algorithm to segment the pixels in the ROI into two categories
(light and dark). Ridler-Calvard is a classic binary segmentation
algorithm that is easy to implement. As a type of k-means seg-
mentation, the algorithm alternates between two steps: first, all
the pixels are assigned to one of the two categories depending
upon whether they are above or below the threshold, then, a new
threshold is computed as the average of the mean value of the light
pixels and the mean value of the dark pixels. The threshold is ini-
tialized with the average value of all the pixels, and the algorithm
usually converges in just a few iterations. Note that this approach
makes no assumption on the orientation of the edge, unlike the
traditional approach that scans the image one row at a time.

Once the image has been segmented, the edge is found by
creating a point between each pair of adjacent pixels with differ-
ent classifications (one light and one dark, according to the thresh-
old found by Ridler-Calvard). Then, given a set of n such points
{(xi,yi)}n

i=1, Step 5 uses the method of total least squares to find
the parameters of the line, which is represented using homoge-
neous coordinates as ax+by+ c = 0 (which again has the advan-
tage of representing lines at any orientation, unlike y = mx+ b).
First, the covariance matrix is constructed:

C =
1
n

n

∑
i=1

[
(xi− x̄)2 (xi− x̄)(yi− ȳ)

(xi− x̄)(yi− ȳ) (yi− ȳ)2

]
, (1)

where (x̄, ȳ) is the centroid of the points. Then the eigenvector
associated with the smallest eigenvalue of C yields the normal
(a,b) to the line, and the signed distance to the origin is given
by c = −ax̄− bȳ . The advantage of total least squares is that it
minimizes the perpendicular distances from the points to the line,
as opposed to the vertical distances (as in ordinary least squares),
thus again making the computation insensitive to the orientation
of the edge.

Another point to be mentioned is that the ESF should be
obtained by convolving the LSF with the convolution kernel[
1 −1

]
, which is the so-called forward (or backward) differ-

ence kernel.4 In contrast, some existing implementations use the
central difference kernel,

[
0.5 0 −0.5

]
. It is important to rec-

ognize that the latter will always yield a lower MTF curve than
the former, because it introduces additional smoothing into the
computation [5]. That is, convolving the 1D projected signal with

4Note that the kernel (FIR filter)
[
−0.5 0.5

]
mentioned in

ISO 12233 [4, 9] is, technically speaking, not correct. The definition of
derivative is limh→∞( f (x+ h)− f (x))/h. For adjacent pixels, h = 1, so
the discrete approximation is f (x+ 1)− f (x), which leads to

[
1 −1

]
,

as in [5]. However, this distinction does not affect the MTF estimate,
since the normalization factor of 0.5 is removed anyway when the DFT is
normalized so the DC component is 1; and the sign disappears when the
magnitude of the DFT is taken.



Figure 7. TOP: Ten 50× 50 crops of a slanted edge at angles of 0 to 45

degrees in steps of 5. BOTTOM: MTF30 values for the different techniques.

The least variation over angle was achieved by reverse projection. Note that

only two implementations were able to compute a value at 0◦; invalid values

are shown as -1.

the central difference kernel is equivalent to first smoothing the
signal using the kernel 1

2
[
1 1

]
then convolving with the for-

ward/backward difference kernel, which is easily seen from the
associative property of convolution and the fact that[

0.5 0 −0.5
]
=

1
2
[
1 1

]
~
[
1 −1

]
, (2)

where ~ represents convolution. As a result, to avoid such unnec-
essary smoothing, it is recommended to use the smallest differen-
tiating kernel possible, namely,

[
1 −1

]
.

In Step 8, the width of the Hamming window is set to the
minimum of the length of the ESF and a maximum width. This
maximum width is set to 15 pixels total (7 pixels on either side of
the edge). Therefore, if a large ROI is used, pixels far from the
edge (greater than 7 pixels away) will have no effect on the result.

Experimental Results
To evaluate the proposed technique, the following imple-

mentations were compared:

• Proprietary commercial implementation of ISO 12233 by
Imatest (version 3.10),5

• Video TMT for Skype implementation of ISO 12233 (ver-
sion 2.3.0.18).6

• Peter Burns’ implementation of ISO 12233 (version 2.0).7

• Internal implementation of ISO 12233.
• Forward projection, implemented by the author.
• Reverse projection, implemented by the author. All steps

are identical to the previous one except for the projection
method (and the truncation of rows, which is not necessary
in the case of reverse projection).

Note that all implementations except the last one use forward pro-
jection. Default parameters were used for all implementations.

5http://www.imatest.com
6https://www.microsoft.com/en-us/download/details.aspx?id=43372
7http://losburns.com/imaging/software/SFRedge/index.htm

Figure 8. MTF curves of the techniques of the 50×50 crop of the 5◦ edge.

Experiment 1: Rotation. A slanted edge target with 4:1
contrast ratio was captured on-axis at 580 lux with 5540 K tem-
perature (all corners within 10% of center) by a consumer-grade
camera. Automatic gain control (AGC) was turned off, and the
image was JPEG compressed. Beginning with a vertical orienta-
tion (0◦), the target was rotated in increments of 5◦ to 45◦. From
each image, a 50×50 region was cropped around the edge.

Results of the different techniques are shown in Fig. 7, along
with two variations of reverse projection by replacing bicubic in-
terpolation with either bilinear (RevProj-L) or no (RevProj-N) in-
terpolation. These results are summarized in the following table,
ignoring 0◦ (at which most techniques failed to produce a result
at all):8

MTF30
Method µ σ outliers
Imatest 0.56 0.08 0

VideoTMT 0.50 0.12 0
Burns 0.52 0.12 0

Internal 0.42 0.14 1
FwdProj 0.51 0.11 0
RevProj 0.51 0.03 0

RevProj-L 0.48 0.03 0
RevProj-N 0.52 0.05 0

Note that reverse projection yielded the tightest result, with a
standard deviation of only 0.03 cycles per pixel. Also note that
the MTF30 value was only slightly higher without interpolation,
with significantly higher variance. Not shown in the table is the
fact that, even if 0◦ is included, reverse projection yields just
σ = 0.08 cycles per pixel, which is the same as the second-best
technique without considering 0◦. Thus, the proposed technique
degrades somewhat gracefully in extreme conditions.

The MTF curves of the techniques at 5 degrees are shown in
Fig. 8. The MTF curve of reverse projection is smooth, whereas
the other curves exhibit significant roughness, along with notice-
able instability after 0.7 cycles per pixel. Fig. 9 shows the MTF
curves of reverse projection for different angles; except for 0 and
45 degrees, there is a large degree of consistency across angle.

Experiment 2: Vertical crop. The 50× 50 image for 5◦

slant (from the previous experiment) was successively cropped to

8Outliers were ignored in computing µ and σ . The best values are
indicated by bold.



Figure 9. MTF curves of reverse projection for the 50×50 crops at different

angles.

a different number of rows, from 3 to 50. Results of the different
techniques are shown in Fig. 10. Note that, because all the crops
were from the same image, the only difference between the inputs
was the number of rows used, and therefore all the MTF30 values
should have been identical. These results are summarized in the
following table:

MTF30
Method µ σ outliers
Imatest 0.66 0.04 0

VideoTMT 0.66 0.04 3
Burns 0.63 0.02 8

Internal 0.30 0.72 9
FwdProj 0.68 0.05 2
RevProj 0.56 0.02 2

RevProj-L 0.54 0.02 2
RevProj-N 0.62 0.05 2

Without ignoring outliers, the smallest variation was achieved by
Imatest (σ = 0.04), with reverse projection following closely be-
hind (σ = 0.05). But if the two smallest crops are ignored, the
variation for reverse projection drops to σ = 0.02 cycles per pixel,
which is the lowest among all techniques. By comparison, Imat-
est does not drop to σ = 0.02 until all crops less than 25 rows
are ignored. If all outliers are included, then among crops from
25 to 50 rows, the variations are σ = 0.01 (reverse projection),
σ = 0.02 (Imatest and VideoTMT), and σ = 0.04 (forward pro-
jection). Burns and internal do not stabilize until at least 40 rows
of pixels are used.

Experiment 3: Horizontal crop. The same 50× 50 5◦

image was then successively cropped to a different number of
columns, from 5 to 50 in increments of 5. Results of the dif-
ferent techniques are shown in Fig. 11. Again, because all the
crops were from the same image, all the MTF30 values should
have been identical. These results are summarized in the follow-
ing table:

· · ·

Figure 10. TOP: Ten of 13 crops from the same 5◦-slant image, each with

a different number of rows. BOTTOM: MTF30 values at vertical crops of 3, 5,

7, 9, and 10 through 50 pixels, the latter in steps of 5. Of all the techniques,

Imatest and reverse projection produced the least variation.

MTF30
Method µ σ outliers
Imatest 0.60 0.01 1

VideoTMT 0.61 0.00 1
Burns 0.62 0.01 1

Internal 0.64 0.01 1
FwdProj 0.64 0.01 0
RevProj 0.53 0.00 0

RevProj-L 0.51 0.01 0
RevProj-N 0.57 0.00 0

Among the techniques with zero outliers, the smallest variation
was achieved by reverse projection, with σ = 0.00 cycles per
pixel. In other words, reverse projection yielded almost the exact
same measurement for all crops, even with as few as 5 columns
of pixels.

Experiment 4: Square crop. The same 50× 50 5◦ image
was then successively cropped in concentric squares, with side
lengths from 5 to 50 pixels in steps of 5. Results of the differ-
ent techniques are shown in Fig. 12, summarized in the following
table:

MTF30
Method µ σ outliers
Imatest 0.65 0.04 2

VideoTMT 0.66 0.04 1
Burns 0.65 0.04 3

Internal 0.63 0.02 4
FwdProj 0.68 0.06 1
RevProj 0.56 0.02 1

RevProj-L 0.54 0.02 1
RevProj-N 0.62 0.06 1

Again, reverse projection yielded the least variation.
Summary. These four experiments are together summarized

in the boxplot of Fig. 13. Only angles between 5 and 20 degrees,
inclusive, were considered, and only crops with smallest dimen-
sion at least 25 pixels. Even so, there was 1 outlier with Burns
and 3 with internal. These results are summarized in the follow-
ing table:



Figure 11. TOP: Ten crops from the same 5◦-slant image, each with a

different number of columns. BOTTOM: MTF30 values at horizontal crops

of 5 through 50 pixels in steps of 5. Reverse projection produced the least

variation.

MTF30
Method µ σ outliers min max range
Imatest 0.62 0.03 0 0.59 0.69 0.10

VideoTMT 0.62 0.03 0 0.58 0.69 0.11
Burns 0.62 0.03 1 0.57 0.67 0.10

Internal 0.61 0.04 3 0.52 0.67 0.15
FwdProj 0.64 0.03 0 0.57 0.73 0.16
RevProj 0.54 0.01 0 0.52 0.56 0.04

RevProj-L 0.52 0.01 0 0.50 0.55 0.05
RevProj-N 0.58 0.01 0 0.56 0.61 0.05

In other words, if someone desires to measure the MTF30 of a
particular slanted edge, the result can vary within a substantial
range (0.52 to 0.69 in this case) depending upon the method used.
To remove the variation due to different angles, the following ta-
ble shows the results limited to the single angle of 5 degrees. In
other words, the variation listed here arises simply from different
crops within a single image of a single edge:

MTF30
Method µ σ outliers min max range
Imatest 0.62 0.02 0 0.60 0.66 0.06

VideoTMT 0.62 0.02 0 0.61 0.66 0.05
Burns 0.63 0.02 1 0.61 0.67 0.06

Internal 0.62 0.02 2 0.60 0.67 0.07
FwdProj 0.65 0.03 0 0.63 0.73 0.10
RevProj 0.54 0.01 0 0.53 0.56 0.03

RevProj-L 0.52 0.01 0 0.51 0.55 0.04
RevProj-N 0.58 0.01 0 0.57 0.61 0.04

As before, reverse projection yields the lowest variation (σ =
0.01) and the tightest range (0.03).

Relationship to Previous Work
In this section let us briefly consider some of the relevant

literature. Williams [2] analyzed the ISO 12233 SFR plug-in ac-

Figure 12. TOP: Ten crops of concentric squares from the same 5◦-slant

image. The length of the side of the square ranges from 5 to 50 pixels in steps

of 5. BOTTOM: MTF30 values at these square crops. Reverse projection

produced the least variation, but all techniques failed to find a reasonable

value for the smallest 5×5 square.

companying the standard for accuracy, precision, and field robust-
ness. The tool was found to yield results insensitive to the angle of
the edge when presented with noiseless 1D Gaussian edges shifted
horizontally to create rows of a 2D image. At 5 degrees, and with
a blurry edge (MTF30 approximately 0.25) the tool yielded ac-
curate results for a range of SNRs, with horizontal cropping nec-
essary at lower SNRs. For a less blurry edge, more subsampling
was found to be necessary (8X for MTF30 = 0.5, 16X for MTF30
= 0.75). The final conclusion was that the tool is accurate, precise,
and robust.

Several authors have analyzed the ISO 12233 algorithm in
various ways. Burns and Williams [3] applied several steps from
the algorithm to the different color channels in order to analyze
color misregistration error in an image. Burns [5] analyzed sev-
eral sources of error in MTF calculation, such as errors in the
estimate of the edge angle, reduced MTF due to using a central
difference convolution kernel for differentiation, and the effect of
additive white Gaussian noise. Williams and Burns [6] used the
algorithm to analyze characteristics of various cameras and scan-
ners by measuring MTF; they recommend MTF10 as the limit of
resolution, based on the Rayleigh criterion. An additional anal-
ysis of sources of error is provided by Burns and Williams [7],
who found that large crops across the edge lead to noise, and er-
rors can be caused by curved lines from lens distortion; they also
recommend low contrast in the target design to reduce clipping.

More recently, Williams and Burns [8] describe deviations
from the ISO 12233 standard that practitioners have devised, such
as Gaussian blur filtering away from the edge, and fitting a higher-
order polynomial rather than a line to handle lens distortion. Note
that the potential benefit of such a higher-order model is reduced
substantially by the technique proposed in this paper due to its
ability to handle small crops. Roland [10] suggests a 4:1 con-
trast ratio and 5-degree edge from the ISO 12233:2014 standard,
and he proposes a correction function to overcome the depen-
dency of MTF on angle, in a study that highlights that even a
well-controlled environment can have significant variability in es-



Figure 13. Boxplot of MTF30 results on the set of images with angle be-

tween 5 and 20 degrees and crop at least 25 pixels. Each blue box delineates

25-75% percentiles, each red line shows the median, the black bars show the

range of values for inliers, and each red plus (+) indicates an outlier (value

of -1, displayed arbitrarily near 0.45).

timated MTF. The rotation invariance of the technique proposed
in this paper obviates the need for such a correction.

Conclusion
This paper has presented a novel algorithm for measuring

MTF using a slanted edge. Rather than projecting values forward
from the 2D image to a 1D array, as in the ISO 12233 standard,
the algorithm projects in the reverse direction from the array to the
image. To increase the algorithm’s robustness, and to reduce its
dependence upon the angle of the edge, two additional novelties
are introduced: using the Ridler-Calvard binary image segmenta-
tion method for finding the edge, and using total least squares to
find the line parameters. Together, these changes yield an algo-
rithm that is largely rotation invariant and exhibits less variation
than existing solutions.

Because the technique is stable, it requires fewer pixels to
yield an estimate for MTF. As a result, smaller crops are allowed
than are usually considered sufficient, thus justifying the use of
line fitting rather than fitting higher-order models. Nevertheless,
an important question that remains unanswered is that of accu-
racy: The proposed approach yields MTF values that are notice-
ably less than those of existing methods, even when interpolation
is not used. Further investigation is needed to determine whether
these lower values are more or less accurate than those found by
existing techniques.
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