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Natural and Fun to Work With



Physical Action and Reaction
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Action =     Reaction 

Newton’s Third Law



H-R Action and Reaction
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Hidden Intentions

1. Difficult to Recognize Human Intentions 

2. Difficult to Predict Human Intentions  



Miniature Autonomous Blimps
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Georgia	Tech	Miniature	Autonomous	Blimp



 Feedback Control

Forward and backward motion

Up and down motion

Spinning motion
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Point and Fly
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Intentions are Clear
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Human Intention:  
Move blimp to one of the two destinations.

Localization markers are placed on the blimp, the 
destinations,  and the wand.

Blimp control performs well.

Interaction is structured and staged.



Pointing Motion on Computer
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To better design blimp motion, we need to 
understand human pointing motion better.

Avoiding blimp dynamics (temporarily)



Mouse Pointing
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y: pointing device position

v: measured device position

w: displayed pointer position

u: perceived pointer position

How to describe the human intention?



The VITE Model
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Vector Integration to Endpoint Model:

Bullock D, and  Grossberg S. Neural dynamics of planned arm movements: emergent invariants 
and speed-accuracy properties during trajectory formation. Psychological Review 1988; 95(1):49–
90.

Desired position of pointer on screen.

Difference vector.

Assume , and only consider the 1-D case.

The switching function

⌫̇ = �(�⌫ + ⇢� u)

ẏ = g(t)[⌫]+d

⇢

⌫

⇢ = 0

[⌫]+d = 0 if ⌫u < 0

[⌫]+d = ⌫ if ⌫u > 0



Pointer Acceleration
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What is Pointer Acceleration

Windows Mac Linux

No
Accel

Accel

Slow
Movements

slow,
precise

Fast
Movements

fast,
far
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Modeling Pointer Acceleration
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Modeling Pointing with Acceleration

y: pointing device position
v: measured device position
w: displayed pointer position
u: perceived pointer position
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Modeling Pointing with Acceleration

y: pointing device position
v: measured device position
w: displayed pointer position
u: perceived pointer position

Question: How do robustness and performance depend on
acceleration, delays, and disturbances?

Di�culties: nonlinear switching, infinite dimension delays,
nondeterministic perturbations

* Bullock, D. and Grossberg, S., 1988. Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties
during trajectory formation. Psychological review, 95(1), p.49.
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.P. Varnell, M. Malisoff and F. Zhang, “Stability and Robustness Analysis for Human Pointing Motions with Acceleration under 
Feedback Delays,” International Journal of Robust and Nonlinear Control, 27(5)703-721, 2017.



Pointer Acceleration Scaling Functions

Name Scaling Function I/O Velocity Plot

No Acceleration G(||v̇||) = k1

Threshold G(||v̇||) =
(
k1, if 0  ||v̇|| < c

k2, if ||v̇|| � c

Linear G(||v̇||) = k1 + k2||v̇||

Modeling Characteristics of Human Pointing Motions with Acceleration 7/20

Pointer Acceleration Scaling Functions

Name Scaling Function I/O Velocity Plot

No Acceleration G(||v̇||) = k1

Threshold G(||v̇||) =
(
k1, if 0  ||v̇|| < c

k2, if ||v̇|| � c

Linear G(||v̇||) = k1 + k2||v̇||

Implementation Scaling Function
Microsoft Windows Threshold (3 levels)

Mac OSX Linear (based on visual inspection only)

Linux (xinput) 8 types (includes threshold, linear, polynomial, etc.)
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Acceleration Strategies
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Closed Loop Dynamics
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Simplified Closed Loop Dynamics

Model

Given the previous assumptions, and letting x =

⇥
w ⌫

⇤>
, the

closed loop pointing dynamics are

ẋ =

 e
G(x

+
2 )x

+
2

�� (x1 + x2)

�

where

e
G(·) = g G(g · ) and x

+
1 =

(
x1, if x1 � 0

0, else
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Assume no delay, 1-D, target position is at zero



Stability
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Stablity of Closed Loop Dynamics

Theorem (Stability of Human Pointing with Acceleration)

For all � 2 R
>0 , and all

e
G : R�0 ! R�0 non-decreasing, the

system defined by:

ẋ =

 e
G(x

+
2 )x

+
2

�� (x1 + x2)

�

has an equlibrium set E = {x : x2 = �x1 and x1 � 0} to which

the state is globally asympotitcally stable.

Modeling Characteristics of Human Pointing Motions with Acceleration 12/20Note the equilibrium states are NOT desired by human.



Finite Time Performance

17

Metrics for Pointing Performance

Fitts’s law metrics:

Stopping Time T = inf

t>0
t such that lim

⌧!t

x2(⌧) = 0

Overshoot O = lim

⌧!T

x1(⌧)
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Effect of Time Delay
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Simulation
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Replacing Pointer by Blimp
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Swarm Following Human
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Use Human Features for More Natural Interaction



Haar Face Detector

• Haar operators 

• Haar features

Edge operators Line operators

feature 1 feature 2 feature 3
Frontal face image set

f1(In ) f2 (In ) f3(In )



Adaboosting

• Define a classifier for each Haar feature: 

• Strong classifier by Adaboosting:

Learned based on training data

Learned by Adaboosting

hm(In ) =
0,  fm(In ) <θ

1,  fm(In ) ≥θ

⎧
⎨
⎪

⎩⎪

H (x) =
0,  αmhm(x)

m=1

M

∑ <
1
2

αm
m=1

M

∑

1,  otherwise                

⎧

⎨
⎪

⎩
⎪



Face Detection
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Scale the original image

Search window

Sub-image I

Face detected! H (x) =
0,  αmhm(x)

m=1

M

∑ <
1
2

αm
m=1

M

∑

1,  otherwise                

⎧

⎨
⎪

⎩
⎪



Face Tracking in Real-time Video
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time line

?Face

Frame Ik Frame Ik+1



Extract Feature Point
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Face Corner 
points

Frame k

Coordinates of feature point i in image frame k: 

Coordinates of the corner points of the bounding box:

x1
k x2

k

x3
kx4

k

xb
k = (ib , jb ),b =1,…,4

xc
F = (ic , jc ),c =1,…,Nc



Kanade-Lucas-Tomasi (KLT)
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 C. Tomasi and T. Kanade. Detection and Tracking of Point Features. Carnegie Mellon University Technical Report CMU-
CS-91-132, April 1991.

Assumption: the face in frame k+1 does not move too much 
compared to frame k. 

Define the displacement vector                  , the image model: 
 

 

Solve the displacement: 

 

 

 

Ik (xi ) = Ik+1(xi −d )+ n(xi )

d = (xd , yd )

xc,1
F xc,2

F xc,3
F

xc,4
F xc,6

F

xc,7
F xc,8

F xc,9
F

Neighborhood of 
feature point xc

F 

xc,5
F

d*= argmin
d

wl Ik+1(xc,l
F )− Ik (xc,l

F )− g ⋅d( )
2

l=1

9

∑
c=1

NF

∑



Bidirectional Error

What if a feature point disappears in the next frame?
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Frame k Frame k+1

Backward track

Forward track

e

If e> threshold, then this point is regarded as 
lost and has no corresponding feature point in 
frame k+1.



Track Face

Bounding box of face in frame k+1: 

Face Center:
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Frame k

Face
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k x2
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kx4
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Frame k+1
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Human Position Estimation



Compute Relative Displacement

d̂

ĥ

ψ̂

d̂ = x̂P
2 + ẑP

2

ĥ = h0 − ŷP

ψ̂ = arcsin
x̂P
d̂

⎛

⎝
⎜

⎞

⎠
⎟



Reaction 
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Distance 
PID Blimp

Camera

−

d0 uH
1 d

d̂



Blimp Tracking Human
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Experiment Results

3D view of the blimp and human 
trajectories

Top view of the blimp and 
human trajectories

Height of the blimp and human



Hand Detection

Detect human face and hands at the same time to localize 
human and recognize human’s intention. 

Use Single-Shot multibox Detector (SSD), which is able to 
detect different kinds of objects at the same time. 

35
Liu, Wei, et al. "SSD: Single shot multibox detector." European Conference 
on Computer Vision. Springer International Publishing, 2016.



xn

Two Gestures

Horizontal hand movement Vertical hand movement



Blimp’s Intentions

Face 
detected. 

Put hand 
near face.

Hand 
detected.

No hand 
detected.

Gesture is 
recognized.  

Blimp will 
react.

LED Display: Low Power, Light Weight.



Spinning Movement





Predicting Human Intention
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A simple problem: Left or Right?



Online Iterative Learning
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Learning(
Algorithm(

Concept(

Feedback(Parameters(

Predic8on(

Output(

Adaptiveness: Expected number of iterations before updating 
prediction after permanent concept change (drift) 
	
Consistency: Expected number of iterations before updating 
predictions after temporary concept change (noise)



Consistency
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Consistent (Less Switching)

Inconsistent (More Switching)



Two Expert Learning

43

Weight WeightW1 W2

Expert with higher weight wins. 
If an expert is wrong, its weight is cut by half. 



Weighted Majority vs.Winnow
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Weighted Majority Algorithm:

If an expert is correct, its weight does not change.

Winnow Algorithm:

If an expert is correct, its weight doubles.

Which algorithm is more adaptive, which one is 
more consistent?

Dual Expert Algorithm:

If an expert is correct, its weight doubles  
but the maximum weight is 0.5.



Comparing Algorithms
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• Expert 1 (w1) predicts up 

• Expert 2 (w2) predicts 
down 

• Results recorded below 
as  R = w1 / w2



Markov Chain for WMA

46

Random Switch Model:

• Z1 :   R=1,  algorithm predicts 1 
• Z2 :   R = ½, algorithm predicts 2 

• p1  :    
Probability that prediction 1 is correct 

• p2  :    
Probability that prediction 2 is correct

Z1Z2



Markov Chain for Winnow
Random Walk Model:

Z0Z-1 Z1Z-2
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• Zi :  R=2i  
–i ≥ 0 predicts 1 
–i < 0 predicts 2



MC for DEA
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Z1
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Z8

Z9
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S=0 S=4S=3S=2S=1



Switching Manifold
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Adaptiveness and Consistency
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Adaptiveness: Reciprocal of mean hitting time from 
blue states to red states. 
 

Consistency:  Mean hitting time from red states to 
blue states.

Assume “1” (blue state) is the intention e.g. 

p1 > p2

Z1Z2

Z1Z2



Comparison
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Weighted Majority Algorithm:

Adaptiveness: p1
1

p2
Consistency:

Winnow Algorithm:

Adaptiveness: p1 � p2 Consistency: 1

Duel Expert Algorithm:

Adaptiveness: Consistency:
p1 � p2

1�
⇣

p2

p1

⌘n+1



Experiments
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Result Analysis
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Test Error	Rate Switch	Rate

Experiment	
Average

35% 12.5%

Sim	5% 21.8% 9.8%

Sim	10% 27.2% 10.7%

Sim	30% 42.2% 12.1%



Multiple Blimps
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Stereo Vision Setting

55

Camera position and pose

X L = uL ,vL ,1⎡⎣ ⎤⎦
T

XR = uR ,vR ,1⎡⎣ ⎤⎦
T

Face location in images

OL = xOL
, yOL

, zOL
,φOL

,θOL
,ψOL

⎡⎣ ⎤⎦
T

OR = xOR
, yOR

, zOR
,φOR

,θOR
,ψOR

⎡⎣ ⎤⎦
T

Measurements:



Localize the Human

Cam 2 Cam 1 

d2 d1

Find  (α1
*,α2

*) = argmin
α1,α2

X1 − X2 2

X1 =α1d1 +OR

X2 =α2d2 +OL



Preliminary Results
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Camera 1 Camera 2



Conclusion
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Recognizing and predicting human intention is 
very important for unmanned system to generate  
proper reaction. 

Lack of reliable model is the major challenge.  

Integration of data-driven methods and  
analytical methods is necessary. 


