... 1).1
In general, a point in an n-dimensional Euclidean space is represented as a point in an (n+1)-dimensional projective space.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... ``line''2
Since it can become confusing to read statements such as, ``A point is represented as a `line,' '' we will always enclose in quotation marks the entities whose sole purpose is visualization in n+1 dimensions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... space,3
Do not be confused by the term space, which can refer to either three dimensions or an arbitrary number of dimensions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...$\ensuremath{{\bf y}} $,4
If $\ensuremath{{\bf t}} =\left[\matrix{a \cr b \cr c}\right]$, then $[\ensuremath{{\bf t}} ]_x = \left[\matrix{0 & -c & b \cr c & 0 & -a \cr -b & a & 0}\right]$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Stanley Birchfield
1998-04-23