Passive Industrial Exoskeletons

Effects of two passive back-support exoskeletons on postural balance during quiet stance and functional limits of stability

While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human+BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.

Wearing a back-support exoskeleton impairs single-step balance recovery performance following a forward loss of balance – An exploratory study

Back-support exoskeletons (BSEs) are a promising ergonomic intervention for reducing physical demands on the low-back, but little is known regarding whether BSE use alters balance recovery following external perturbations. Hence, we investigated the effects of wearing a BSE on single-step balance recovery following a forward loss of balance. Sixteen (8M, 8F) young, healthy participants were released from static forward-leaning postures and attempted to recover their balance with a single step while wearing a BSE (backXTM) with three different levels of support torque (i.e., no torque, low, and high) and in a control condition (no exoskeleton). Lean angle was increased until they failed in two consecutive trials to recover their balance with a single step. The maximum lean angle from which individuals could successfully recover was not significantly altered when wearing the BSE. However, wearing the BSE under all torque conditions increased reaction times. The BSE also impeded hip flexion (i.e., decrease in both peak hip flexion angle and angular velocity), resulting in decreased peak knee flexion velocity, knee range of motion, and step length. Measures of the margin of stability decreased significantly in the high-torque BSE condition. Overall, our results suggest that use of a BSE that provides external hip extension torque impairs balance recovery responses. Future work extending kinetic analyses to recovery responses, as well as a study of recovery when responding to slips and trips while walking, would offer a more complete picture of how a BSE may impact balance recovery following a loss of balance.