1. B. Johnson, , Q. Zhu, et. al, “Implicit Dual-Control for Visibility-Aware Navigation in Complex Off-Road Scenarios”, submitted to IEEE Transactions on Robotics (https://www.arxiv.org/abs/2507.04371)
2. A. Ghate, O. Akinyele, Q. Zhu, et al., “Cascaded RL-MPPI framework for Off-Road Vehicles: Integrating Global Maps and SLAM”, submitted to IEEE Transactions on Intelligent Transportation Systems
3. S. Yang, A. Ghate, Q. Zhu, R. Prucka, “An Interpretable Reinforcement Learning Approach for Emission and Fuel Optimization in Heavy-Duty Hybrid Electric Vehicles”, submitted to Energy Conversion and Management, 2025
4. H. Mirzaei, Q. Zhu, A. Vahidi, Y. Parvini, et al. “Optimal Lithium-Ion Battery Model Identification via Pontryagin’s Maximum Principle”, submitted to IEEE Transactions on Industrial Electronics, 2024
5. Q. Zhu, E. Vorwerk, A. Kumar, R. Prucka, “Enhanced Airpath Control of Opposed Piston Two Stroke Diesel Engines using Model Predictive Control”, conditionally accepted by IEEE Transactions on Control Systems Technology
6. A. Ghate, A. Sundar, Q. Zhu, R. Prucka, M. Figuero-Santos, and M. Barron, “Development of an integrated energy and thermal planner for a series hybrid off-road autonomous tracked vehicle”, Energy Conversion and Management, vol. 322, pp. 119163, Dec., 15, 2024, doi: 1 0.1016/j.enconman.2024.119163
7. Q. Zhu, G. Ozkan, M. Figueroa-Santos, M. Barron, C. S. Edrington and R. Prucka, "Global Optimal Predictive Control of PMSM Using Dynamic Programming: An Offline Benchmarking Tool," in IEEE Access, vol. 12, pp. 169720-169732, 2024, doi: 10.1109/ACCESS.2024.3498734
8. R. Koli, D. Egan, Q. Zhu, and R. Prucka, “Nonlinear model predictive control of a DISI turbocharged engine with virtual engine co-simulation and real-time experimental validation”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 237, no. 14, pp. 3380 – 3396, Dec. 2023, doi: 10.1177/09544070221146586
9. D. Egan, Q. Zhu, and R. Prucka, “A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation”, Energies, vol. 16, no. 8, 3450, 2023, https://doi.org/10.3390/en16083450
10. Q. Zhu, A. Kumar, A. Sundar, D. Egan, et al., "Development of a Series Hybrid Electrified Powertrain for a High Speed Tracked Vehicle Based on Driving Cycle Simulation," SAE Int. J. Adv. & Curr. Prac. in Mobility 4(4):1403-1412, 2022, https://doi-org.libproxy.clemson.edu/10.4271/2022-01-0367.
11. R. Koli, D. Egan, Q. Zhu, and R. Prucka, “Nonlinear model predictive control of a DISI turbocharged engine with virtual engine co-simulation and real-time experimental validation”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 237, no. 14, pp. 3380 – 3396, Dec. 2023, doi: 10.1177/09544070221146586.
12. Q. Zhu, R. Prucka, “Transient Hybrid Electric Vehicle Powertrain Control Based on Iterative Dynamic Programming” ASME Journal of Dynamic Systems, Measurement, and Control. vol. 144, no. 2, doi: https://doi.org/10.1115/1.4052230.
13. A. Mamun, Q. Zhu, M. Hoffman, and S. Onori, “Physics-based Linear Model Predictive Control strategy for Three-Way Catalyst Air/Fuel Ratio Control”, IMechE, Part D: Journal of Automobile Engineering, 235(14), 2021: 09544070211021207.
14. Q. Zhu, S. Wang, R. Prucka, M. Prucka and H. Dourra, “Online spark timing optimization with complex high-fidelity combustion phasing knock and COV of IMEP models”, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 143, no. 6,: 061007., June 2021,
15. Z. Wang, Q. Zhu, and R. Prucka, “Air-to-fuel ratio error source determination for a spark-ignition engine using a disturbance observer”, International Journal of Powertrains, vol. 10, no. 1, pp. 54 – 78, Apr. 2021.
16. Q. Zhu, R. Prucka, “Integrated engine state estimation using Extended Kalman Filter and disturbance observer”, SAE International Journal of Advances and Current Practices in Mobility, vol. 2, issue 2019-01-2603, pp. 929-938, 2019.
17. Q. Zhu, S. Onori and R. Prucka, “An economic nonlinear model predictive control strategy for SI engines: model-based design and real-time experimental validation”, IEEE Transactions on Control Systems Technology, vol. 27, no. 1, pp. 296-310, 2019.
18. Q. Zhu, R. Prucka, M. Prucka and H. Dourra, “A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR”, SAE International Journal of Commercial Vehicles, vol.10, no.1, pp. 360-372, 2017.
19. Q. Zhu, R. Prucka, M. Prucka and H. Dourra, “Model predictive engine speed control for transmissions with dog clutches”, Journal of Engineering for Gas Turbines and Power, vol.139, no.11, Jun., 2017.
20. Z. Wang, Q. Zhu, R. Prucka, M. Prucka and H. Dourra, “Observer based cylinder air charge estimation for spark ignition engines”, Journal of Engineering for Gas Turbines and Power, vol.139, no.10, May, 2017.
21. Q. Zhu, R. Prucka, S. Wang, M. Prucka, and H. Dourra, “Model-based optimal combustion phasing control strategy for spark ignition engines”, SAE Int. J. Engines, vol. 9, no. 2, pp.1170-1179, 2016
22. S. Wang, R. Prucka, Q. Zhu, M. Prucka and H. Dourra, “A real-time model for spark ignition engine combustion phasing prediction”, SAE Int. J. Engines, vol. 9, no. 2, pp. 1180-1190, 2016.
23. Q. Zhu, S. Wang, R. Prucka, M. Prucka and H. Dourra, “Model based control-oriented combustion phasing feedback for fast CA50 estimation”, SAE Int. J. Engines, vol. 8, no. 3, pp. 997-1004, 2015.
24. S. Wang, Q. Zhu, R. Prucka, M. Prucka and H. Dourra, “Input adaptation for control oriented physics-based SI engine combustion models based on cylinder pressure feedback”, SAE Int. J. Engines, vol. 8, no. 4, pp. 1463-1471, 2015.
25. Q. Zhu, L. Feng, A. Mayyas, MA. Omar, and etc., “Production energy optimization using low dynamic programming, a decision support tool for sustainable manufacturing”, Journal for Cleaner Production, vol. 105, pp. 178-183, 2015.
26. M. Omar, Q. Zhu, L. Feng, M. Khraisheh and et al. “A hybrid simulation approach for predicting energy flows in production lines”, Int. J. of Sustainable Engineering, vol. 9, no. 1, pp. 25-34, 2015.
Qilun Zhu, Ph.D.Research Associate Professorqilun@clemson.edu(864) 283-72394 Research DriveGreenville, SC 29607